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Abstract. Atmospheric tracer transport is a computationally demanding component of the
atmospheric dynamical core of weather and climate simulations. Simulations typically have tens to
hundreds of tracers. A tracer field is required to preserve several properties, including mass, shape,
and tracer consistency. To improve computational efficiency, it is common to apply different spatial
and temporal discretizations to the tracer transport equations than to the dynamical equations. Using
different discretizations increases the difficulty of preserving properties. This paper provides a unified
framework to analyze the property preservation problem and classes of algorithms to solve it. We
examine the primary problem and a safety problem; describe three classes of algorithms to solve these;
introduce new algorithms in two of these classes; make connections among the algorithms; analyze
each algorithm in terms of correctness, bound on its solution magnitude, and its communication
efficiency; and study numerical results. A new algorithm, QLT, has the smallest communication
volume, and in an important case it redistributes mass approximately locally. These algorithms are
only very loosely coupled to the underlying discretizations of the dynamical and tracer transport
equations and thus are broadly and efficiently applicable. In addition, they may be applied to remap
problems in applications other than tracer transport.
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1. Introduction. Tracer transport is a computationally demanding component
of the atmospheric dynamical core of weather and climate simulations [2, 8, 11, 20, 35].
In this component, trace constituent species in the air are advected according to the
velocity field (winds) computed by the solution of the dynamical equations in the
dynamical component. Let \rho > 0 be the total air density, Qi \geq 0 be the density of
tracer i, qi \equiv Qi/\rho \in [0, 1] be the mixing ratio of constituent i, and \bfitv be the wind
velocity field. Subsequently we omit i. The dynamical component computes the total
density as a coupled part of solving the dynamical equations by solving the air mass
continuity equation, \rho t + \nabla \cdot (\bfitv \rho ) = 0. The tracer transport component computes
the density of each tracer given the winds and the air density field by solving the

\ast Submitted to the journal's Software and High-Performance Computing section January 16, 2018;
accepted for publication (in revised form) March 5, 2019; published electronically May 23, 2019.

http://www.siam.org/journals/sisc/41-3/M116541.html
Funding: This work was supported by the U.S. Department of Energy, Office of Science, Biolog-

ical and Environmental Research Program and Advanced Scientific Computing Research Program
under the Launching an Extreme-scale ACME Prototype for Transport (LEAP-T) and the Non-
Hydrostatic Dynamics with Multi-Moment Characteristic Discontinuous Galerkin (NH-MMCDG)
Methods projects. Sandia National Laboratories is a multimission laboratory managed and operated
by the National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Ad-
ministration under contract DE-NA-0003525. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United States Government. SAND
2019-2617J.

\dagger Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87125
(ambradl@sandia.gov, pabosle@sandia.gov, onguba@sandia.gov, mataylo@sandia.gov).

\ddagger Mathematics, Engineering, and Computer Science Division, University of New Mexico, Valencia,
Los Lunas, NM 87031 (gregbarnett@unm.edu).

C161

c\bigcirc 2019 National Technology and Engineering Solutions of Sandia, LLC. Published by SIAM under
the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

05
/2

9/
19

 to
 1

98
.1

02
.1

55
.1

20
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 

http://www.siam.org/journals/sisc/41-3/M116541.html
mailto:ambradl@sandia.gov
mailto:pabosle@sandia.gov
mailto:onguba@sandia.gov
mailto:mataylo@sandia.gov
mailto:gregbarnett@unm.edu


C162 BRADLEY, BOSLER, GUBA, TAYLOR, AND BARNETT

tracer mass continuity equation, Qt +\nabla \cdot (\bfitv Q) = 0, or, equivalently, the mixing ratio
advection equation, qt + \bfitv \cdot \nabla q = 0.

We call a quantity that must be maintained essentially exactly, in an otherwise
approximate solution to the differential equations, a property. Four correlated aspects
of the problem make tracer transport challenging. First, simulations typically have
tens to hundreds of tracers. Second, the subgrid chemistry and physics models in
simulations require the tracer fields to obey several properties. Third, to address the
first challenge, computational efficiency strongly motivates different discretizations
and time steps for the transport and dynamical components. Fourth, using different
discretizations increases the difficulty of maintaining properties.

Some properties are inherent in a tracer transport discretization; others must be
recovered after the discretization provides a preliminary, or target, field. We call the
difference between the final property preserving field and the preliminary target field
the correction. This paper describes correction algorithms that preserve properties
not inherent in the discretization while maintaining those that are. The algorithms
are computation- and communication-efficient, have useful bounds on the correction
magnitude as a function of readily accessible problem data, always return correct
solutions when primary problem constraints are feasible, return favorable solutions
to a safety constraint set when they are not, and depend very little on the details of
each component's discretization and thus are widely applicable. We call the class of
methods of which these algorithms are members constrained density reconstructors
(CDRs). A CDR can be used to solve a global problem or a local one, e.g., within a
mesh cell.

This paper proceeds as follows. The remainder of section 1 describes the proper-
ties on which this paper focuses, some general aspects of CDRs, existing work, and
applications. Section 2 formalizes and characterizes the property preservation prob-
lem, including primary and safety problems. The next three sections discuss CDRs in
three classes: limited-reduction (section 3) and optimization-based (section 4) CDRs,
and the new Quasi-Local Tree-based CDR (QLT, section 5). In addition, subsec-
tion 3.1 provides an algorithm to make a CDR solve the safety problem if the primary
problem is infeasible. These three sections characterize these algorithms in terms of
correctness, safety, and correction 1-norm. Each algorithm in sections 3 and 4 can be
used as a global or local method; as local methods, some of these algorithms are used
as node subproblem solvers in QLT, and thus section 5 builds on the analysis of the
first two sections. Section 6 discusses the algorithms in terms of communication effi-
ciency on a distributed computer and shows that QLT has the lowest communication
volume. Section 7 presents results of numerical studies comparing various methods;
these show that QLT and QLT with weights from [3] provide the highest quality
corrections. Section 8 concludes.

1.1. Property preservation and CDRs. Let \bfitrho , \bfitQ , and \bfitq be vectors of co-
efficients in the discretizations of \rho , Q, and q, respectively. Each component of the
dynamical core has a value for air density \bfitrho . The transport component computes \bfitrho if
mixing ratio \bfitq = \bfite , the vector of ones. The dynamical and transport components are
tracer consistent or free stream preserving [20] if these computed air densities agree.

Shape preservation encompasses a variety of constraints and methods, including
limiters [1, 18] and monotone reconstructions [9]. We focus on methods that ap-
ply bound constraints to the coefficients of nodal discretizations. Positivity requires
\bfitrho ,\bfitQ \geq 0. Range preservation assures that all values of a field lie between globally
applied lower and upper bounds: l\bfite \leq \bfitq \leq u\bfite . The scalars l, u may be set just once
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PROPERTY PRESERVATION IN TRACER TRANSPORT C163

for the entire simulation---e.g., 0, 1 to maintain valid mixing ratios---or be determined
at each time step by the global extremal values at the previous time step; the first
problem is static, the second dynamic, range preservation.

Any problem at least as strong as the dynamic range preservation problem pro-
vides tracer consistency. Let \bfitq n - 1 be a mixing ratio at time step n  - 1. Suppose
a tracer transport component sets \bfitl n, \bfitu n such that mini l

n
i = mini \bfitq 

n - 1
i , maxi u

n
i =

maxi \bfitq 
n - 1
i ; and suppose it uses \bfitrho n computed by the dynamical component to re-

late \bfitq n and \bfitQ n. Then it will compute tracer-consistent \bfitq n. For if \bfitq n - 1 = \bfite , then
\bfitl n = \bfitu n = \bfite and thus \bfitq n = \bfite .

In this paper, we focus on the most general problem of local bound preservation,
\bfitl \leq \bfitq \leq \bfitu , where each local lower and upper bound li, ui, respectively, is determined
at each time step, e.g., using the discrete domain of dependence of mesh node i. But
we also discuss a dynamic range preservation problem that can be solved if the full
shape preservation problem is infeasible.

CDRs that provide corrections to achieve mass conservation, shape preservation,
and tracer consistency typically require one or more batch, typically all-to-all, reduc-
tions (BARs), a communication global collective. A batch reduction reduces multiple
scalars in a single communication round. An all-to-all collective reports the results
to all participants. Communication efficiency is then a function of first the number
of reductions and second the communication volume, the amount of data communi-
cated. Communication may not be necessary if the discretization is mass conserving
and the transport time step is restricted sufficiently [16]. This paper focuses on global
methods to enable essentially arbitrary time steps in, e.g., semi-Lagrangian methods.

A CDR should be a continuous function of its input. The CDR cannot provide
more smoothness than continuity in general because clipping to bounds is only con-
tinuous. A CDR should be semilinear in the sense of [21, 25, 30]. Semilinearity is
stronger than needed to assure tracer consistency, and it is required to preserve linear
correlation between two tracers [21]. Semilinearity does not assure linear correlation
preservation among more than two tracers. In general, if the transport operator con-
sists of a high-order transport method and a limiter to impose mass conservation and
local bound preservation, tracer linear correlation can be preserved only between pairs
of tracers for two reasons. First, the transport operator is not linear because of the
limiter; thus, linear correlation is lost in general, except among linearly correlated
pairs because of semilinearity. Second, corrections sufficient to regain linear corre-
lation among more than two tracers couple the shape preservation problem among
these tracers. The methods in this paper operate on each tracer separately; there-
fore, they are semilinear but no stronger. An important example of a correlation that
these CDRs are unable to preserve is

\sum n
i=1 \bfitq i = \bfite , n > 2, the constraint that tracer

mixing ratios sum to 1. Semilinearity does not imply continuity; the two conditions
are separate, as we explain in section 3.

1.2. Related work. White and Dongarra [32] discuss communication efficiency
of CDRs. They propose a CDR for mass conservation and range preservation. One
BAR is required for static, and two for dynamic, range preservation. We analyze the
number of batch reductions required by various methods solving the stronger local
bound preservation problem. Priestley [27] describes an iterative method for local
bound preservation and mass conservation. It uses high- and low-order interpolants.
Each iteration requires a BAR. Bermejo and Conde [3] describe a CDR for the same
problem. They devise a weight vector by comparing high- and low-order interpolants.
The weight vector strongly encourages shape preservation but does not assure it,
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C164 BRADLEY, BOSLER, GUBA, TAYLOR, AND BARNETT

and the algorithm assures mass conservation. Sections 3 and 5 provide new methods
that can use this weight vector but also assure shape preservation. Diamantakis and
Flemming [12] review the methods of Bermejo and Conde [3], Zerroukat [34], Priestley
[27], and McGregor [26]. They find the methods of Zerroukat and McGregor do not
provide strict shape preservation in practice.

Bochev et al. describe optimization-based remap (OBR) methods [4, 5, 6] and
applications in which the optimization problem provides mass conservation and local
bound preservation. An efficient, but iterative, method [10] is used to solve the
optimization problem. Each iteration requires a reduction. Section 4 analyzes this
approach in our framework.

In a cell-integrated semi-Lagrangian (SL) method [20], the departure cell geome-
try may be adjusted to preserve properties. In general, adjustment is a global prob-
lem; but in a flux-form transport method, the adjustments can be decoupled [22, 24].
Compared with a CDR, the approach does not use a global collective but requires
flux form.

Kaas et al. [17] describe a hybrid Eulerian--Lagrangian (HEL) scheme. Equa-
tions (22)--(25) of that reference correspond to our algorithm ClipAndAssuredSum
(section 3). We place the method in a broader setting suitable for analysis and com-
parison. In addition, HEL develops local bounds on mixing ratio in a manner that
assures feasibility of the resulting constraint set; in other applications, an assuredly
feasible constraint set may not be efficiently computable. ReconstructSafely
(subsection 3.1) enables the CDR to efficiently maintain dynamic range even if the
primary constraint set is empty.

1.3. Applications. Because the algorithms in this paper depend very little on
the details of discretizations, they may be used in any scheme that either currently
does not preserve properties or preserves properties with a CDR. For example, QLT
may be well suited for direct application to the interpolation SL methods Spectral
Bicubic interpolation scheme (SBC) [14] and FARSIGHT [32]. SBC runs on a latitude-
longitude grid, and FARSIGHT runs on the cubed sphere. FARSIGHT already has
a dynamic range preservation CDR, but QLT can strengthen FARSIGHT's prop-
erty preservation to local bound preservation. HEL [17] is much more complicated
than SBC and FARSIGHT, but it still has essentially the same property preservation
problem. It might benefit from using QLT instead of its current use of, essentially,
global ClipAndAssuredSum, for increased efficiency. Any OBR algorithm whose
optimization problem has the structure of one of the three problems considered in
section 4 can use the algorithms described in this paper for increased and determin-
istic communication efficiency and a solution framework that relaxes constraints as
necessary to resolve infeasibility. For example, [5, eq. 4.3] has the structure of problem
\scrP w2 (section 4).

Some tracer transport discretizations already provide mass conservation. But
gaining shape preservation and tracer consistency without losing this mass conser-
vation is as hard as gaining both these and mass conservation. Thus, the CDRs
described in this paper are useful regardless of whether the discretization conserves
mass. Nonetheless, a mass-conservative discretization has advantages. Generally, it
will require smaller corrections than nonconservative methods. In addition, QLT
(section 5) redistributes mass approximately locally if the transport discretization is
mass conservative; we discuss this detail further in sections 5 and 7.

In a method having multiple discretization points per cell, such as finite-element
methods, a CDR may be applied hierarchically. A global CDR redistributes mass
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PROPERTY PRESERVATION IN TRACER TRANSPORT C165

among cells, and then a cell-local CDR redistributes mass within a cell. The purpose
of the global CDR is to provide each cell with a mass sufficient to make the subsequent
cell-local problem feasible; section 2 discusses problem feasibility. Different CDR
algorithms can be used for the global and local problems.

Two criteria concerning the transport method determine whether a global CDR
is the appropriate method to preserve properties. The first is the transport method's
time step. If the transport method is Eulerian, and thus likely in flux form, and time
integration is explicit, then a CDR, while mathematically applicable, is not an efficient
means of preserving properties. Instead, it is possible that the time integration method
and time step can be chosen so that mass redistribution among cells is not necessary
to preserve properties; see, e.g., [16, Theorem 1] and [36, Theorem 2.2]. With these
choices, property preservation can be obtained entirely locally within each cell and
thus without extra communication, except possibly in the details of obtaining local
bounds and regaining continuity across cells. If a global CDR from this paper were
applied in this case, its correction would be 0. Alternatively, fluxes can be adjusted
by a scheme that decouples the mass redistribution problem; see, e.g., [31, 33].

The second criterion is whether the SL method uses flux or remap form. A global
CDR is particularly well suited to SL transport in remap form. For large time steps,
remap form can use substantially less communication than flux form. For in remap
form, the computational domain of dependence of a parcel is its advected image,
whereas in flux form, this domain is the swept region (e.g., [24]), the union of the
regions swept by the parcel's edges during advection. Flux form provides information
that can obviate a global CDR, as exploited in [24]. But remap form SL transport
with an efficient CDR can have a lower overall communication volume, and one that---
roughly, subject to the details of the transport problem---does not grow with time step,
as it does in flux form. In summary, the primary motivation for CDR algorithms is
that SL tracer transport can be substantially faster than Eulerian transport because
of a long time step without CFL restriction, SL transport in remap form can be more
efficient than SL transport in flux form, high-order SL transport generally requires
redistributing mass among cells to preserve properties, and remap-form transport
lacks flux information with which to redistribute mass.

In [7], we describe a family of cell-integrated, remap-form, spectral-element [29],
SL methods for two-dimensional transport on the sphere. Because the methods are
cell-integrated, they are locally mass conserving. In that work, we use QLT for shape
preservation and tracer consistency.

2. Preliminaries. We let all arithmetic and logical operators apply element-
wise. For example, \bfitx \bfity is elementwise multiplication; \bfitx /\bfity is elementwise division; in
\bfitb \equiv \bfitx \leq \bfity , the boolean bi = xi \leq yi. The inner product of two vectors is denoted
\bfitx \cdot \bfity . The vector \bfite is the vector of all ones; the context determines its size. Similarly,
0 is the vector of all zeros.

Let \=\bfitrho > 0 be the mass field coefficients; subsequently, we omit coefficients and
sometimes field. In a nodal finite-element method, each component might correspond
to a nodal basis function; then \=\rho i = wi\rho i, where wi is the integral of the node's basis
function and \rho i is the density. Or a component of the vector might correspond to an
aggregation of components from another vector. For example, let \bfitrho N be a vector over
mesh nodes and \=\bfitrho C be a vector over mesh cells. Then \=\rho Ci =

\sum 
j\in Ci

wi
j\rho 

N
j is the mass

in cell i as a function of nodal basis functions and densities, where Ci is the index set
of nodes in cell i and wi

j is the integral of basis function wj over cell i. The algorithms
in this paper are independent of these distinctions, as they begin with \=\bfitrho .
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C166 BRADLEY, BOSLER, GUBA, TAYLOR, AND BARNETT

Let \bfitQ be a constituent tracer's density. The tracer transport component is pro-
vided \bfitrho  - and \bfitrho , the total density fields at the previous and current time steps, respec-
tively, and\bfitQ  - , the tracer density at the previous time step. The transport component
must compute \bfitQ or, equivalently, \bfitq \equiv \bfitQ /\bfitrho . Source terms act outside of the transport
component and thus are not considered. Let \=\bfitQ 

\ast 
be the target tracer mass computed

by the tracer transport discretization. Let \bfitq min and \bfitq max be bounds such that the fi-
nal tracer field \=\bfitQ is intended to satisfy \=\bfitrho \bfitq min \leq \=\bfitQ \leq \=\bfitrho \bfitq max. For example, qmax

i might
be the maximum nodal value in q\ast i 's discrete domain of dependence in \bfitq  - . The global

tracer mass is \=Qg \equiv \bfite \cdot \=\bfitQ  - 
; \=\bfitQ is sought such that \bfite \cdot \=\bfitQ = \=Qg. In summary, consider

the set \=\scrQ (\=\bfitrho , \=Qg, \bfitq 
min, \bfitq max) \equiv \{ \=\bfitQ : (i) \bfite \cdot \=\bfitQ = \=Qg and (ii) \=\bfitrho \bfitq min \leq \=\bfitQ \leq \=\bfitrho \bfitq max\} .

Condition (i) enforces mass conservation, and (ii) enforces shape preservation and
tracer consistency. CDRs seek \=\bfitQ \in \=\scrQ (\=\bfitrho , \=Qg, \bfitq 

min, \bfitq max) close to \=\bfitQ 
\ast 
.

It is usually more convenient to work with a correction variable set. \=\bfitQ and \=\bfitQ 
\ast 

are related by the correction vector \bfitx : \=\bfitQ = \=\bfitQ 
\ast 
+ \bfitx . The other variables follow from

this relation. Let b \equiv \=Qg  - \bfite \cdot \=\bfitQ \ast 
, \bfitl \equiv \=\bfitrho \bfitq min  - \=\bfitQ 

\ast 
, \bfitu \equiv \=\bfitrho \bfitq max  - \=\bfitQ 

\ast 
. The target

\bfitx \ast \equiv \=\bfitQ 
\ast  - \=\bfitQ 

\ast 
= 0 will be omitted from expressions. In terms of this variable set,

CDRs seek \bfitx \in \scrT (b, \bfitl ,\bfitu ) \equiv \{ \bfitx : (i) \bfite \cdot \bfitx = b and (ii) \bfitl \leq \bfitx \leq \bfitu \} . \scrT (b, \bfitl ,\bfitu ) is 1-1 with
\=\scrQ (\=\bfitrho , \=Qg, \bfitq 

min, \bfitq max). We refer to the equivalent sets \=\scrQ , \scrT as the primary constraint
set. Figure 3.1 illustrates concepts in two dimensions. \scrT (b, \bfitl ,\bfitu ) is the shaded box in
each diagram; \bfitl and \bfitu are the lower-left and upper-right corners, respectively. The
mass conservation constraint is the line \bfite \cdot \bfity = b.

Proposition 2.1. \scrT (b, \bfitl ,\bfitu ) \not = \emptyset if and only if \bfitl \leq \bfitu and \bfite \cdot \bfitl \leq b \leq \bfite \cdot \bfitu .
Proof. Let \bfitx \in \scrT and \scrT \not = \emptyset . Then \bfite \cdot \bfitl \leq \bfite \cdot \bfitx = b \leq \bfite \cdot \bfitu . Suppose \bfitl \leq \bfitu 

and \bfite \cdot \bfitl \leq b \leq \bfite \cdot \bfitu . Set \bfitx (\alpha ) \equiv (1  - \alpha )\bfitl + \alpha \bfitu and choose \alpha so that \bfite \cdot \bfitx (\alpha ) = b:
\alpha = (b  - \bfite \cdot \bfitl )/[\bfite \cdot (\bfitu  - \bfitl )]. b \leq \bfite \cdot \bfitu implies \alpha \leq 1. \bfite \cdot \bfitl \leq \bfite \cdot \bfitu and \bfite \cdot \bfitl \leq b imply
\alpha \geq 0. Hence \bfitl \leq \bfitx (\alpha ) \equiv \bfitx I \leq \bfitu .

\bfitx I is labeled in Figure 3.1; it is the point at the intersection of \bfite \cdot \bfity = b and the
line segment connecting \bfitl and \bfitu .

It may be that \scrT (b, \bfitl ,\bfitu ) = \emptyset . In practice, this can happen because the procedure
to find \bfitl , \bfitu is heuristic and local; nothing in the procedure may assure, in particular,
the global property \bfite \cdot \bfitl \leq b \leq \bfite \cdot \bfitu . A useful superset \scrT s( \=\bfitQ \ast 

, \=\bfitrho , b, \bfitl ,\bfitu ) is essentially
always nonempty. Let

qmin(\=\bfitrho , \=\bfitQ 
\ast 
, \bfitl ) \equiv min

i
qmin
i = min

i

\=Q\ast 
i + li
\=\rho i

, \bfitl s(\=\bfitrho , \=\bfitQ 
\ast 
, \bfitl ) \equiv qmin(\=\bfitrho , \=\bfitQ 

\ast 
, \bfitl )\=\bfitrho  - \=\bfitQ 

\ast 
,

qmax(\=\bfitrho , \=\bfitQ 
\ast 
,\bfitu ) \equiv max

i
qmax
i = max

i

\=Q\ast 
i + ui

\=\rho i
, \bfitu s(\=\bfitrho , \=\bfitQ 

\ast 
,\bfitu ) \equiv qmax(\=\bfitrho , \=\bfitQ 

\ast 
,\bfitu )\=\bfitrho  - \=\bfitQ 

\ast 
,

\scrT s( \=\bfitQ \ast 
, \=\bfitrho , b, \bfitl ,\bfitu ) \equiv \scrT (b, \bfitl s(\=\bfitrho , \=\bfitQ \ast 

, \bfitl ),\bfitu s(\=\bfitrho , \=\bfitQ 
\ast 
,\bfitu )).

\scrT s is the set of all dynamic range preserving and mass conserving corrections. Recall
that (\cdot ) - denotes a quantity at the previous time step.

Proposition 2.2. Let q - min \equiv mini \=\bfitQ 
 - 
i /\=\rho 

 - 
i and q - max \equiv maxi \=\bfitQ 

 - 
i /\=\rho 

 - 
i . Consider

a simulation for which the following conditions hold:

1. \bfite \cdot \=\bfitrho  - = \bfite \cdot \=\bfitrho = \=\rho g and \bfite \cdot \=\bfitQ  - 
= \=Qg.

2. qmin(\=\bfitrho , \=\bfitQ 
\ast 
, \bfitl ) \leq q - min and qmax(\=\bfitrho , \=\bfitQ 

\ast 
,\bfitu ) \geq q - max.

Then \scrT s( \=\bfitQ \ast 
, \=\bfitrho , b, \bfitl ,\bfitu ) \not = \emptyset .

We can expect these conditions to hold in practice. A dynamical component
typically conserves mass, and mass conservation holds for the transport component
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PROPERTY PRESERVATION IN TRACER TRANSPORT C167

inductively. Condition 2 mimics that the exact solution to the advection equation
maintains its extrema.

Proof of Proposition 2.2. First, q - max\=\rho g = \=\rho g maxi \=Q - 
i /\=\rho 

 - 
i = (

\sum 
i \=\rho 

 - 
i )maxi \=Q - 

i /\=\rho 
 - 
i

\geq \sum 
i \=\rho 

 - 
i (

\=Q - 
i /\=\rho 

 - 
i ) = \=Qg. Similarly, q - min\=\rho g \leq \=Qg. Second, \bfite \cdot \=\bfitrho = \=\rho g implies

q - min\bfite \cdot \=\bfitrho \leq \=Qg \leq q - max\bfite \cdot \=\bfitrho . Hence by Proposition 2.1, \scrT  - \equiv \scrT ( \=Qg, q
 - 
min\=\bfitrho , q

 - 
max\=\bfitrho ) \not = \emptyset .

Finally, condition 2 and identification of variables show \scrT s( \=\bfitQ \ast 
, \=\bfitrho , b, \bfitl ,\bfitu ) \supseteq \scrT  - and

so is not empty.

Because \scrT s prevents the introduction of new global extrema, provides tracer con-
sistency, conserves mass, and is always nonempty, we call it the safety constraint
set. This paper focuses on algorithms that efficiently find a correction in the primary
constraint set, if it is nonempty, or else the safety constraint set.

3. Limited-reduction algorithms. The proof of Proposition 2.1 constructs a
point \bfitx I \in \scrT (b, \bfitl ,\bfitu ) \not = \emptyset . This correction may be arbitrarily larger than necessary.
Function ClipAndAssuredSum (CAAS) in Algorithm 3.1 finds a correction whose
magnitude is characterized in Corollary 3.5. In algorithms, \leftarrow denotes variable as-
signment. First, CAAS clips \bfitx \ast = 0 to satisfy condition (ii) of \scrT (b, \bfitl ,\bfitu ), producing
\=\bfitx , colored red and labeled in Figure 3.1. Then it finds a unit nonnegative weight
vector \bfitv and partitions the mass discrepancy m using it. The result, m\bfitv , colored
green and labeled in the diagrams, is added to \=\bfitx to produce the correction \bfitx , \bfitx caas

in the diagrams. (Color available online.)

Algorithm 3.1 ClipAndAssuredSum, MakeAssuredWeights, and Clip.

Pre: \bfitl \leq \bfitu and \bfite \cdot \bfitl \leq b \leq \bfite \cdot \bfitu 
Post: Proposition 3.1 and Corollary 3.5
1: function ClipAndAssuredSum(b, \bfitl ,\bfitu )
2: \=\bfitx \leftarrow Clip(\bfitl ,\bfitu )
3: m\leftarrow b - \bfite \cdot \=\bfitx 
4: if m = 0 then return \=\bfitx 
5: \bfitv \leftarrow MakeAssuredWeights(\bfitl ,\bfitu ,m, \=\bfitx )
6: return \=\bfitx +m\bfitv 
7: end function
8: function Clip(\bfitl ,\bfitu )
9: for i\leftarrow 1, n do \=xi \leftarrow max\{ li,min\{ ui, 0\} \} 

10: return \=\bfitx 
11: end function
12: function MakeAssuredWeights(\bfitl ,\bfitu ,m, \=\bfitx )
13: return \bfitu  - \=\bfitx 

\bfite \cdot (\bfitu  - \=\bfitx ) if m > 0 else \=\bfitx  - \bfitl 
\bfite \cdot (\=\bfitx  - \bfitl )

14: end function

We write our algorithms for mathematical clarity; they should not be used as
guides for efficient implementations. In section 6, we show that ClipAndAssured-
Sum can be implemented with a single BAR, an MPI Allreduce in particular. We
call CDRs that use a deterministic maximum of such reductions limited-reduction
algorithms; ClipAndAssuredSum is a one-reduction algorithm. It was previously
described in [17, eqs. 22--25].

In each proposition concerning algorithms, the preconditions of the algorithms,
annotated Pre: in an algorithm listing, are assumed to hold. The postcondition
in an algorithm listing indicates the propositions directly relevant to the algorithm.

c\bigcirc 2019 National Technology and Engineering Solutions of Sandia, LLC. Published by SIAM under
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x̄

e · y = b

e · x̄

u

l
m

b

mvxcaas

xw2

T1(b, l,u)

xI

(a)

T1(b, l,u) = xw2

= xcaas

x̄

u

mv

l
e · y = b = 0

xI

(b)

Fig. 3.1. Illustration of limited-reduction and optimization algorithms. (a) b \not = 0; (b) b = 0.
\bfitx I is constructed in the proof of Proposition 2.1, \bfitx caas is the output of ClipAndAssuredSum in
Algorithm 3.1, and \bfitx w2 is described in section 4.

ClipAndAssuredSum is correct, as follows.

Proposition 3.1. If \scrT (b, \bfitl ,\bfitu ) \not = \emptyset , then ClipAndAssuredSum(b, \bfitl ,\bfitu ) returns
\bfitx \in \scrT .

The proof is in Appendix A.1.
Function ClipAndAssuredSum chooses a particular weight vector \bfitw to assure

correctness. Others may be useful for quality of correction; see, e.g., [3]. As a first
step to permitting other weight vectors, ClipAndGenericSum in Algorithm 3.2
implements an algorithm useful for analysis, but not useful in practice: the function
may fail to return \bfitl \leq \bfitx \leq \bfitu even if \scrT (b, \bfitl ,\bfitu ) \not = \emptyset .

Algorithm 3.2 ClipAndGenericSum.

Pre: \bfitw \geq 0 and \bfite \cdot \bfitw > 0
Post: Proposition 3.3
1: function ClipAndGenericSum(b, \bfitl ,\bfitu ,\bfitw )
2: \=\bfitx \leftarrow Clip(\bfitl ,\bfitu )
3: m\leftarrow b - \bfite \cdot \=\bfitx 
4: \bfitz \leftarrow \bfitw 

\bfite \cdot \bfitw 
5: return \=\bfitx +m\bfitz 
6: end function

A useful measure of the magnitude of a correction is its 1-norm, \| \bfitx \| 1. This value
is the total mass by which the target field is altered. We use ClipAndGenericSum
to characterize \| \bfitx \| 1 as returned by any CDR that can be implemented by forming a
weight vector \bfitw and then calling ClipAndGenericSum.

ClipAndGenericSum first clips \bfitx \ast = 0 to get \=\bfitx . The clip at index i is necessary,
and it is independent of every other clip. Then, because \bfitz \geq 0 and \bfite \cdot \bfitz = 1, it adds
exactly the mass discrepancy m, and no more, to \=\bfitx to get \bfitx . Let \bfitd \equiv \bfitx  - \=\bfitx ; each
element of \bfitd is either zero or shares the same sign because this fact is true of \bfitw .
Additionally, for any i for which xi is altered in the second step, the modification
di has the same sign as the clip modification in the first. Hence the total change,
\| \bfitx \| 1, is the sum of \| \=\bfitx \| 1 and \| \bfitd \| 1. Since each of the two steps modifies the vector
by exactly as much as needed, \| \bfitx \| 1 is minimal. This argument is an intuitive proof
that \bfitx is 1-norm-minimal; Appendix A.2 contains a formal proof of Proposition 3.2.
Let \scrT 1(b, \bfitl ,\bfitu ) \equiv argminx\in \scrT (b,\bfitl ,\bfitu ) \| \bfitx \| 1, the set of all 1-norm-minimal points in \scrT .

c\bigcirc 2019 National Technology and Engineering Solutions of Sandia, LLC. Published by SIAM under
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PROPERTY PRESERVATION IN TRACER TRANSPORT C169

Proposition 3.2. If \scrT (b, \bfitl ,\bfitu ) \not = \emptyset and ClipAndGenericSum returns \bfitx \in \scrT ,
then \| \bfitx \| 1 \in \scrT 1(b, \bfitl ,\bfitu ).

Next, let

Bl(\bfitl ) \equiv 
\sum 
i

max \{ 0, li\} =
\sum 
i:li>0

li, Bu(\bfitu ) \equiv 
\sum 
i

max \{ 0,  - ui\} =  - 
\sum 

i:ui<0

ui,

B(\bfitl ,\bfitu ) \equiv Bl(\bfitl ) +Bu(\bfitu ) =
\sum 
i

max \{ 0, li,  - ui\} .

B(\bfitl ,\bfitu ) is the mass by which the target field is out of bounds. A first use of it is to
provide a simple lower bound on the magnitude of \bfitx \in \scrT (b, \bfitl ,\bfitu ):

(3.1) \| \bfitx \| 1 \geq max \{ | b| , B(\bfitl ,\bfitu )\} .

For if \bfite \cdot \bfitx = b, then | b| \leq \bfite \cdot | \bfitx | = \| \bfitx \| 1. If \bfitl \leq \bfitx \leq \bfitu , then \bfite \cdot | \bfitx | \geq \sum 
i:li>0 li  - \sum 

i:ui<0 ui = B(\bfitl ,\bfitu ). Next, let

d(\bfitl ,\bfitu ) \equiv 

\left\{     
\bfite \cdot \bfitl if this is positive,

\bfite \cdot \bfitu if this is negative,

0 else.

d(\bfitl ,\bfitu ) is a technical term that is used particularly in the proof of Proposition 5.3.

Proposition 3.3. If \scrT (b, \bfitl ,\bfitu ) \not = \emptyset and ClipAndGenericSum(b, \bfitl ,\bfitu ,\bfitw ) re-
turns \bfitx \in \scrT , then

\| \bfitx \| 1 = min
\^\bfitx \in \scrT 
\| \^\bfitx \| 1 =

\Biggl\{ 
b+ 2Bu(\bfitu ) if m \geq 0,

 - b+ 2Bl(\bfitl ) if m \leq 0,
(3.2)

\| \bfitx \| 1 \leq | b| + 2(B(\bfitl ,\bfitu ) - | d(\bfitl ,\bfitu )| ).(3.3)

The first equality of (3.2) simply repeats Proposition 3.2. The proof of the re-
maining relations is in Appendix A.1.

ClipAndGenericSum is flexible in that it requires only that\bfitw \geq 0 and \bfite \cdot \bfitw > 0,
but it may return an invalid correction. Meanwhile, ClipAndAssuredSum returns
a valid correction if one is possible, but it fully specifies \bfitw . We can combine the
two. Function ClipAndAssuredGenericSum in Algorithm 3.3 is an algorithm
template. The user chooses a weight vector \bfitw \geq 0. \bfitw can be formed after the
clip and mass discrepancy computations and thus can depend on their computed
data. ClipAndAssuredGenericSum combines the caller's weight vector with that
from MakeAssuredWeights to assure \bfitx \in \scrT (b, \bfitl ,\bfitu ) if \scrT \not = \emptyset . It calls Make-
BestConvexCombination to find 0 \leq \alpha \leq 1 in the modified weight vector \bfity \equiv 
\alpha \bfitw /(\bfite \cdot \bfitw )+(1 - \alpha )\bfitv , where \bfitv is provided byMakeAssuredWeights. If \alpha = 0, then
the output of ClipAndGenericSum is identical to that of ClipAndAssuredSum.
If \alpha = 1, then the caller's weight vector is used without modification. ClipAnd-
AssuredGenericSum uses the largest \alpha \leq 1 possible to maximize the influence of
the caller's weights. The following proposition summarizes these facts. The proof is
in Appendix A.1.

Proposition 3.4. If \scrT (b, \bfitl ,\bfitu ) \not = \emptyset , then MakeBestConvexCombination re-
turns the maximal \alpha in [0, 1] such that \bfitx \leftarrow ClipAndAssuredGenericSum(b, \bfitl , \bfitu )
\in \scrT , and such \alpha exists.
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C170 BRADLEY, BOSLER, GUBA, TAYLOR, AND BARNETT

Algorithm 3.3 ClipAndAssuredGenericSum.

Pre: \bfitl \leq \bfitu and \bfite \cdot \bfitl \leq b \leq \bfite \cdot \bfitu 
Post: Proposition 3.4 and Corollary 3.5
1: function ClipAndAssuredGenericSum(b, \bfitl ,\bfitu )
2: \=\bfitx \leftarrow Clip(\bfitl ,\bfitu )
3: m\leftarrow b - \bfite \cdot \=\bfitx 
4: if m = 0 then return \=\bfitx 
5: choose \bfitw \geq 0
6: \delta \leftarrow \bfite \cdot \bfitw 
7: if \delta = 0 then return ClipAndAssuredSum(b, \bfitl ,\bfitu )
8: \bfitz \leftarrow \bfitw /\delta 
9: \bfitv \leftarrow MakeAssuredWeights(\bfitl ,\bfitu ,m, \=\bfitx )

10: \alpha \leftarrow MakeBestConvexCombination(\bfitl ,\bfitu , \bfitz ,\bfitv ,m, \=\bfitx )
11: \bfity \leftarrow \alpha \bfitz + (1 - \alpha )\bfitv 
12: return \=\bfitx +m\bfity 
13: end function
Pre: \bfitl \leq \bfitu and \bfite \cdot \bfitl \leq b \leq \bfite \cdot \bfitu ; \bfitz \geq 0 and \bfite \cdot \bfitz = 1
Post: 0 \leq \alpha \leq 1
14: function MakeBestConvexCombination(\bfitl ,\bfitu , \bfitz ,\bfitv ,m, \=\bfitx )
15: \alpha \leftarrow 1
16: if m = 0 then return \alpha 
17: \bfitd \leftarrow \bfitu if m > 0 else \bfitl 
18: for i\leftarrow 1, n do if zi > vi then \alpha \leftarrow min

\Bigl\{ 
\alpha , di - \=xi - mvi

m(zi - vi)

\Bigr\} 
19: return \alpha 
20: end function

ClipAndAssuredSum and ClipAndAssuredGenericSum can be implement-
ed by constructing a weight vector \bfitw and then returning ClipAndGenericSum(b,
\bfitl , \bfitu , \bfitw ). This statement proves the following corollary.

Corollary 3.5. If \scrT (b, \bfitl ,\bfitu ) \not = \emptyset , then ClipAndAssuredSum and ClipAnd-
AssuredGenericSum return \bfitx \in \scrT 1(b, \bfitl ,\bfitu ).

Next, we consider continuity and semilinearity. Inspection of the algorithms shows
the following.

Proposition 3.6. ClipAndAssuredSum, ClipAndGenericSum, and Clip-
AndAssuredGenericSum are continuous functions of their inputs.

In the context of this proposition, the inputs may be those of an infeasible prob-
lem. Then the preconditions are not satisfied, and an algorithm may return output
violating the postconditions. But that output is still a continuous function of the
inputs.

A transport operator A is said to be semilinear if A(\alpha \bfitx + \beta ) = \alpha A(\bfitx ) + \beta for
scalars \alpha , \beta and vector \bfitx [21, 25, 30]. A CDR is semilinear if the transformations
\bfitq min \rightarrow \beta \bfite + \alpha \bfitq min, \bfitq max \rightarrow \beta \bfite + \alpha \bfitq max, \=\bfitQ 

\ast \rightarrow \beta \=\bfitrho + \alpha \=\bfitQ 
\ast 
, \=Qg \rightarrow \beta \bfite \cdot \=\bfitrho + \alpha \=Qg

transform the output as \=\bfitQ \rightarrow \beta \=\bfitrho + \alpha \=\bfitQ . Here, a\rightarrow b means that a is transformed to
b. Under this transformation, our correction variable set transforms as b\rightarrow \alpha b, \bfitl \rightarrow \alpha \bfitl ,
\bfitu \rightarrow \alpha \bfitu , \bfitl s \rightarrow \alpha \bfitl s, \bfitu s \rightarrow \alpha \bfitu s. Hence a CDR is semilinear if its output transforms
as \bfitx \rightarrow \alpha \bfitx . Note that the term semilinear has, by convention, a special meaning
in the context of transport operators; in other settings, the term has a different
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PROPERTY PRESERVATION IN TRACER TRANSPORT C171

meaning. Semilinearity in the sense of [21, 25, 30] does not imply continuity. We can
construct a counterexample in three dimensions. Let R be a rotation matrix such
that \bfite =

\surd 
3RT\bfite n, where \bfite n has a one in its final element and is otherwise zero. Let

fR(x, y, z) \equiv [0, 0, g(x, y)+ z], where g is homogeneous of degree 1 and discontinuous.
Then f(\bfitv ) \equiv RT fR(R\bfitv ) is, first, discontinuous and, second, semilinear. The first is
by construction of g. The second can be verified by simplifying f(\alpha \bfitv + \beta \bfite ), using
that R\bfite =

\surd 
3\bfite n on the second term of the argument, homogeneity of g applied to

the first two components of \alpha R\bfitv , that fR is nonzero only in its third component, and
finally that

\surd 
3\beta RT\bfite n = \beta \bfite , yielding \alpha f(\bfitv ) + \beta \bfite .

Again by direct inspection of the algorithms, we obtain the following.

Proposition 3.7. ClipAndAssuredSum, ClipAndGenericSum, and Clip-
AndAssuredGenericSum are semilinear.

Now we discuss an example of the utility of ClipAndAssuredGenericSum.
Bermejo and Conde's algorithm [3], hereafter BC, is an instance ofClipAndGeneric-
Sum. Hence Proposition 3.2 implies that its output is a minimal 1-norm correction
in addition to being a minimal weighted-2-norm correction by construction. Let their
weight vector be \bfitw BC . ClipAndGenericSum cannot assure that \bfitx \in \scrT (b, \bfitl ,\bfitu ) \equiv \scrT 
even if \scrT \not = \emptyset . Nor can BC. But, first, \bfitw BC strongly encourages satisfaction of
the constraints. Second, ClipAndAssuredGenericSum can be used with \bfitw BC to
return exactly their solution \bfitx BC when \bfitx BC \in \scrT , and otherwise a solution result-
ing from the convex combination, as close to \bfitw BC as possible, of \bfitw BC and that
from MakeAssuredWeights. Thus, ClipAndAssuredGenericSum safeguards
another, nested, algorithm. The method of Zerroukat [34] may also benefit from safe-
guarding. To make ClipAndAssuredGenericSum a general safeguard, the user's
wi should first be modified to be 0 if \=xi is on a bound and the sign of m will make \=xi

stay on that bound.

3.1. Safety problem. So far we have discussed algorithms that return a valid
correction only if the primary constraint set is not empty. We refer to such a CDR
as a primary CDR. ReconstructSafely in Algorithm 3.4 calls a user-provided
primary CDR, SelectX. If the primary set \scrT (b, \bfitl ,\bfitu ) is not empty, Reconstruct-
Safely returns the output of SelectX. If it is empty, then it calls SelectX with
new inputs, now to find a correction in the safety constraint set. We say that a CDR
having this behavior is safe. Although Proposition 2.2 assures that the safety set is not
empty when ReconstructSafely is used in a typical simulator, Reconstruct-
Safely nonetheless has a branch to handle an empty safety set. In this branch, the
correction is only mass conserving. In section 5, QLT calls ReconstructSafely as
a subproblem solver. A QLT subproblem can require this final branch even when the
global problem has a nonempty safety set.

ReconstructSafely sets \bfitw = \=\bfitrho if the user does not provide \bfitw . This choice
encourages uniform relative mass change, whereas \bfitw = \bfite encourages uniform absolute
mass change. More generally, a weight vector in the literature that is constructed with
respect to \bfitq should be multiplied by \=\bfitrho for use in our mass-formulated CDRs. A weight
vector that depends on problem data must be checked for semilinearity; \bfitw = \=\bfitrho indeed
does not break semilinearity.

Propositions 3.8 and 3.9 establish that ReconstructSafely is a safe CDR, a
continuous operator, and a semilinear operator.

Proposition 3.8. (i) If \scrT (b, \bfitl ,\bfitu ) \not = \emptyset , then ReconstructSafely returns \bfitx \in 
\scrT ; else (ii) if \scrT s( \=\bfitQ \ast 

, \=\bfitrho , b, \bfitl ,\bfitu ) \not = \emptyset , then \bfitx \in \scrT s; else (iii) ReconstructSafely
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C172 BRADLEY, BOSLER, GUBA, TAYLOR, AND BARNETT

Algorithm 3.4 ReconstructSafely.

Pre: \bfitl \leq \bfitu ; \=\bfitrho > 0; \bfitw = None or \bfitw \geq 0
Pre: if \scrT (b, \bfitl ,\bfitu ) \not = \emptyset , SelectX(b, \bfitl ,\bfitu ,\bfitw ) returns \bfitx \in \scrT satisfying (3.3)
Post: Propositions 3.8 and 3.10
1: function ReconstructSafely( \=\bfitQ 

\ast 
, \=Qg, \=\bfitrho , \bfitl ,\bfitu ,\bfitw , SelectX)

2: if \bfitw = None then \bfitw \leftarrow \=\bfitrho 
3: b\leftarrow \=Qg  - \bfite \cdot \=\bfitQ \ast 

4: if \bfite \cdot \bfitl \leq b \leq \bfite \cdot \bfitu then return SelectX(b, \bfitl ,\bfitu ,\bfitw )  \triangleleft \scrT (b, \bfitl ,\bfitu ) \not = \emptyset 
5: if b > \bfite \cdot \bfitu then
6: \bfitu s \leftarrow 

\Bigl( 
maxi

\=Q\ast 
i +ui

\=\rho i

\Bigr) 
\=\bfitrho  - \=\bfitQ 

\ast 

7: if b \leq \bfite \cdot \bfitu s then
8: return \bfitu + SelectX(b - \bfite \cdot \bfitu , 0, \bfitu s  - \bfitu , \bfitw )  \triangleleft \scrT s( \=\bfitQ \ast 

, \=\bfitrho , b, \bfitl ,\bfitu ) \not = \emptyset 
9: else

10: return \bfitu s +
b - \bfite \cdot \bfitu s

\bfite \cdot \=\bfitrho \=\bfitrho  \triangleleft \scrT s( \=\bfitQ \ast 
, \=\bfitrho , b, \bfitl ,\bfitu ) = \emptyset 

11: end if
12: else
13: \bfitl s \leftarrow 

\Bigl( 
mini

\=Q\ast 
i +li
\=\rho i

\Bigr) 
\=\bfitrho  - \=\bfitQ 

\ast 

14: if b \geq \bfite \cdot \bfitl s then
15: return \bfitl + SelectX(b - \bfite \cdot \bfitl , \bfitl s  - \bfitl , 0, \bfitw )
16: else
17: return \bfitl s +

b - \bfite \cdot \bfitl s
\bfite \cdot \=\bfitrho \=\bfitrho 

18: end if
19: end if
20: end function

returns \bfitx such that \bfite \cdot \bfitx = b.

Proposition 3.9. ReconstructSafely is a continuous and semilinear func-
tion if SelectX is.

Finally, we bound the correction size. If the primary constraint set is not empty,
\| \bfitx \| 1 is provided by Proposition 3.3. But if it is empty, then we bound the amount
by which the correction is out of the primary bounds.

Proposition 3.10. ReconstructSafely returns \bfitx such that (i) if \scrT (b, \bfitl ,\bfitu ) \not =
\emptyset , then \| \bfitx \| 1 \leq | b| +2(B(\bfitl ,\bfitu ) - | d(\bfitl ,\bfitu )| ); else (ii) if b \geq \bfite \cdot \bfitu , then \| \bfitx  - \bfitu \| 1 \leq b - \bfite \cdot \bfitu 
and \bfitx \geq \bfitu , or else \| \bfitx  - \bfitl \| 1 \leq \bfite \cdot \bfitl  - b and \bfitx \leq \bfitl . In each case of (ii), \bfitx is a 1-norm-
minimal deviation from the bound constraint.

The proofs proceed by inspection of the logical branches inReconstructSafely
and then application of earlier propositions relevant to the primary CDR SelectX.

4. Optimization problems. A member of another class of CDRs explicitly
solves an optimization problem to find the smallest valid correction. Consider the
following optimization problems and their solution sets, with \bfitomega > 0:

\scrP 1 : \scrT 1(b, \bfitl ,\bfitu ) \equiv argmin
x\in \scrT (b,\bfitl ,\bfitu )

\| \bfitx \| 1 ,

\scrP w1 : \scrT w1(\bfitomega , b, \bfitl ,\bfitu ) \equiv argmin
x\in \scrT (b,\bfitl ,\bfitu )

\bfitomega \cdot | \bfitx | ,

\scrP w2 : \scrT w2(\bfitomega , b, \bfitl ,\bfitu ) \equiv argmin
x\in \scrT (b,\bfitl ,\bfitu )

\bfitomega \cdot \bfitx 2.
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PROPERTY PRESERVATION IN TRACER TRANSPORT C173

\scrP w2 is the problem corresponding to set \scrT w2, and similarly for the others. Each
problem and set is convex because \scrT (b, \bfitl ,\bfitu ) is convex and each objective is convex.
Uniqueness is not of interest, but we note that for \bfitomega > 0, \bfitomega \cdot \bfitx 2 is strictly convex
and so \scrT w2(\bfitomega , b, \bfitl ,\bfitu ) has exactly zero points (if \scrT (b, \bfitl ,\bfitu ) = \emptyset ) or one point. The
objectives find minimal 1-norm, weighted-1-norm, and weighted-2-norm corrections,
respectively. In fact, the correction is minimal in the 1-norm in all three problems.

Proposition 4.1. \scrT w1(\bfitomega , b, \bfitl ,\bfitu ) \subseteq \scrT 1(b, \bfitl ,\bfitu ) and \scrT w2(\bfitomega , b, \bfitl ,\bfitu ) \subseteq \scrT 1(b, \bfitl ,\bfitu ).
We prove Proposition 4.1 in Appendix A.2. Recall that limited-reduction CDRs

also find 1-norm-minimal corrections (Corollary 3.5). Thus, all CDRs we have pre-
sented so far return 1-norm-minimal corrections.
\scrP w2 is illustrated in Figure 3.1(a),(b) by the elliptical arcs. An ellipse (in 2D) is

a surface of constant weighted-2-norm. The correction resulting from solving \scrP w2 is
labeled \bfitx w2. Both corrections \bfitx w2 and \bfitx caas lie in \scrT 1.

A solver for one of these optimization problems is a primary CDR; calling a solver
through ReconstructSafely makes a safe CDR. The continuity and semilinearity
of these optimization problems are evident by direct inspection.

Proposition 4.2. If SelectX is a solver for one of the optimization problems,
then Propositions 3.8 to 3.10 hold.

Weights in these optimization problems influence the solution as the reciprocal
of those elsewhere. In particular, comparison of the terms \bfitomega \bfitx + \lambda \bfite in \bfits in \scrP w2's
Karush--Kuhn--Tucker (KKT) conditions (Appendix A.2) with ClipAndGeneric-
Sum's update \bfitx \leftarrow \=\bfitx +m\bfitz , where \bfitz \equiv \bfitw /(\bfite \cdot \bfitw ), shows that \omega i \propto 1/wi.

An efficient algorithm to solve \scrP w2 is described in [10] and is used in [4, 5, 6]
for global mass conservation and shape preservation. It is iterative, with the number
of iterations dependent on data, and each iteration requires a reduction. Thus, as a
global CDR, it is less efficient than the limited-reduction CDRs, and its performance
depends on the data. However, QLT (section 5) can use it efficiently to solve node
subproblems.

5. Tree algorithms. A third and new class of CDR algorithms generalizes
the first two. The computations of an algorithm in this class are structured by a
tree. The tree is over the mesh entities to which the indices of the vector \=\bfitQ corre-
spond, e.g., mesh cells or mesh nodes, and may have arbitrary structure. At each
node of the tree, ReconstructSafely is used to solve a CDR subproblem. In
ReconstructSafely, SelectX may be any of ClipAndAssuredSum, ClipAnd-
AssuredGenericSum; solvers for the optimization problems \scrP w2, \scrP 1, \scrP w1; or any
other CDR that returns a valid correction if one is possible and whose correction
magnitude is bounded by (3.3). In practice and in our analysis of communication
efficiency (section 6), it is sensible for the node subproblem to be solved within a
single process and so for it to require no communication. Thus, we distinguish be-
tween the global CDR and problem, and a local CDR and subproblem. An algorithm
that is inefficient as a global CDR may still be efficient as a local CDR, e.g., 2-norm
minimization.

We introduce one algorithm in this class, QLT (Quasi-Local Tree-based CDR).
Propositions 5.1 and 5.2 establish that QLT is a safe, continuous, semilinear CDR, in-
heriting the characteristics of the subproblem solver wrapper ReconstructSafely.
Proposition 5.3 shows that QLT inherits the bound (3.3) from SelectX. Proposi-
tion 5.4 shows that QLT does not inherit the equality (3.2). However, we explain
that while QLT may not return a 1-norm-minimal correction, the larger magnitude
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C174 BRADLEY, BOSLER, GUBA, TAYLOR, AND BARNETT

has an interesting and useful source: QLT redistributes mass approximately locally,
where locality is determined by the tree. We call this type of locality quasi-locality
since it is not as precise as, e.g., a flux-based redistribution of mass.

Tree algorithms are possible fundamentally because of the necessary and suffi-
cient conditions in Proposition 2.1. The condition \bfite \cdot \bfitl \leq b \leq \bfite \cdot \bfitu summarizes the
feasibility of the primary problem with just three scalars, independently of the size of
the problem. Another way to think of this is that just three scalars are necessary to
determine what is needed to make the problem feasible. A tree algorithm exploits this
compactness of data. A node summarizes the portion of the global problem rooted at
the node with essentially three scalars and communicates with its parent what posi-
tive or negative mass it needs to solve, or it can take while still maintaining feasibility
of, this portion of the problem.

Algorithm 5.1 QLT, LeavesToRoot, RootToLeaves.

Pre: \bfitl \leq \bfitu ; \=\bfitrho > 0; \bfitw = None or \bfitw \geq 0
Pre: if \scrT (bn, \bfitl n,\bfitu n) \not = \emptyset , SelectX(bn, \bfitl n,\bfitu n,\bfitw n) returns \bfitx n \in \scrT satisfying (3.3)
Pre: r is the root of a tree whose leaves are 1-1 with i \in \{ 1, . . . , n\} 
Post: Propositions 5.1 and 5.3
1: function QLT( \=\bfitQ 

\ast 
, \=Qg, \=\bfitrho , \bfitl ,\bfitu ,\bfitw , SelectX, r)

2: if \bfitw = None then \bfitw \leftarrow \=\bfitrho 
3: LeavesToRoot(r, \=\bfitQ 

\ast 
, \=\bfitrho , \bfitl ,\bfitu ,\bfitw )

4: \bfitx \leftarrow 0
5: b\leftarrow \=Qg  - r.data[0]
6: RootToLeaves(r, b,\bfitx )
7: return \bfitx 
8: end function
9: function LeavesToRoot(n, \=\bfitQ 

\ast 
, \=\bfitrho , \bfitl ,\bfitu ,\bfitw )

10: if n.kids = \emptyset then
11: n.data \leftarrow ( \=\bfitQ 

\ast 
[n.id], \=\bfitrho [n.id], \bfitl [n.id],\bfitu [n.id],\bfitw [n.id])  \triangleleft List of 5 scalars

12: else
13: for k in n.kids do LeavesToRoot(k, \=\bfitQ 

\ast 
, \=\bfitrho , \bfitl ,\bfitu ,\bfitw )

14: n.data\leftarrow \sum 
k\in n.kids k.data  \triangleleft Elementwise sum of kids' lists

15: end if
16: end function
17: function RootToLeaves(n, bn,\bfitx )
18: if n.kids = \emptyset then
19: \bfitx [n.id] = bn
20: else
21: \=\bfitQ 

\ast 
n, \=\bfitrho n, \bfitl n,\bfitu n,\bfitw n \leftarrow ()  \triangleleft Initialize 5 empty lists

22: for k \in n.kids do  \triangleleft Fill the lists
23: append entries of k.data to \=\bfitQ 

\ast 
n, \=\bfitrho n, \bfitl n,\bfitu n,\bfitw n, respectively

24: end for
25: if \bfite \cdot \bfitw n = 0 then \bfitw n \leftarrow \=\bfitrho n

26: \=Qgn \leftarrow bn + n.data[0]
27: \bfitx n \leftarrow ReconstructSafely( \=\bfitQ 

\ast 
n, \=Qgn, \=\bfitrho n, \bfitl n,\bfitu n,\bfitw n,SelectX)

28: for i\leftarrow 1,Length(n.kids) do RootToLeaves(n.kids[i], \bfitx n[i], \bfitx )
29: end if
30: end function

Let a tree have nodes n \in \scrN . For use in Algorithm 5.1, let each node have the
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u11 + u12

m∗
11 + m∗

12

send l11,m
∗
11, u11

~m∗
21 = (m∗

11,m
∗
12)

~u21 = (u11, u12)

store l11,m
∗
11, u11

m∗
11 = x∗

1

store l12,m
∗
12, u12

m∗
12 = x∗

2

store ~l21 = (l11, l12)

send l11 + l12

(a) LeavesToRoot

x1 ← m21(1) x2 ← m21(2)

m21(1) m21(2)

m31(1) m31(2)

min~m31 ‖~m31 − ~m∗
31‖

s.t. m31(1) + m31(2) = MG
~l31 ≤ ~m31 ≤ ~u31

~l21 ≤ ~m21 ≤ ~u21

s.t. m21(1) + m21(2) = m31(1)
min~m21 ‖~m21 − ~m∗

21‖

(b) RootToLeaves

Fig. 5.1. Diagrams of (a) LeavesToRoot and (b) RootToLeaves functions of QLT for the
case of a binary tree. Blue text associated with tree edges shows communicated values. Black text
associated with nodes shows (a) the values stored at each node in LeavesToRoot and (b) the node
subproblem solved in RootToLeaves. MG is the required global mass. m is mass, l is lower bound,
and u is upper bound; arrow annotation indicates a length-2 vector of values. Parenthesized (1), (2)
are indices into the 2-vectors. (Color available online.)

following fields:
\bullet kids, n's list of child nodes, empty if n is a leaf;
\bullet id, the index i with which a leaf node n is associated;
\bullet data, a list of data associated with n.

QLT first reduces a problem within a subtree by summing \=\bfitQ 
\ast 
, \=\bfitrho , \bfitl , \bfitu , and \bfitw ;

LeavesToRoot is a reduction with the addition operator. At the root, b is available
to create the first node subproblem. These are then solved in turn from root to leaves,
with each solution vector providing b for the child nodes' subproblems. Figure 5.1
shows diagrams of of the LeavesToRoot and RootToLeaves steps of QLT.

Proposition 5.1. Proposition 3.8 holds with QLT in place of Reconstruct-
Safely.

Proposition 5.2. QLT is a continuous and semilinear function if SelectX is.

Proposition 5.3. Proposition 3.10 holds with QLT in place of Reconstruct-
Safely.

Appendix A.3 contains the proofs of Propositions 5.1 and 5.3. The continuity
and semilinearity of QLT are evident by direct inspection.

Figure 5.2(a) demonstrates the following.

Proposition 5.4. Suppose \scrT (b, \bfitl ,\bfitu ) \not = \emptyset . \bfitx returned by QLT may not be in
\scrT 1(b, \bfitl ,\bfitu ).

A 1D density field consisting of one up- and one down-pointing triangle, identical
up to translation and sign, is clipped symmetrically. For generality, the mesh is
nonuniform and the tree is not symmetric relative to the density field. Because the
clipped mass changes sum to 0, m = 0 in ClipAndAssuredSum. Thus, the Clip-
AndAssuredSum correction simply clips the original function. In contrast, QLT's
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C176 BRADLEY, BOSLER, GUBA, TAYLOR, AND BARNETT
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(b) Quasi-local mass redistribution

Fig. 5.2. Illustrations of QLT's local redistribution of mass. (a) Dotted lines are lower and
upper bounds. The solid green line is the original tracer mixing ratio. The black dash-dotted line
is the ClipAndAssuredSum-corrected field. The red dashed line is the QLT-corrected field. (b)
Illustration of QLT's quasi-local mass redistribution. See text for details. (Color available online.)

tree imposes locality on the redistribution of mass. The mass from the left triangle's
clipped peak cannot be used to fill in the hole formed from clipping the right triangle,
as these two features are too far apart, according to the tree. Thus, the correction
from QLT is larger in norm than the one from ClipAndAssuredSum and thus is
not 1-norm-minimal. But the QLT correction's 1-norm is bounded usefully by (3.3).

That QLT redistributes mass locally is a positive attribute of the algorithm that
is most prominent when QLT is used to provide shape preservation and tracer con-
sistency to a transport discretization that is already mass conserving. In such a case,
there is no global mass discrepancy to resolve at the root node. Still, as we shall see,
the mass redistribution is not as local as it could be; thus, we use the term quasi-local
to refer to the locality property of QLT. Quasi-local mass redistribution occurs as
follows.

Let l, the level of a node, be the number of edges between the root and n. Let
L be the largest value such that the node subproblem of each node in level l < L
is satisfied after LeavesToRoot finishes, i.e., before RootToLeaves starts. Then
none of these nodes will alter its child nodes' masses in the RootToLeaves pass; case
(i) of Proposition 3.10 applies with b, B, d all 0, and so the subproblem's correction
has 0 1-norm. Let H be the height of the tree, i.e., the maximum level l. Then
mass moves within subtrees of height at most H  - L and not between these subtrees.
The relation of the tree to the mesh provides the maximum distance over which this
localized mass redistribution occurs.

Figure 5.2(b) plots results of a numerical experiment that illustrates QLT's mass
redistribution. The periodic 1D domain has 64 cells, each having unit length. Lower
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PROPERTY PRESERVATION IN TRACER TRANSPORT C177

and upper bounds are everywhere 0 and 1, respectively. At the start, m units of mass
are placed in cell 32 (with base-0 indexing), and all other cells have 0 mass; this is \=\bfitQ 

\ast 
.

The tree is binary and balanced; it is translated so that any of 64 trees is possible. By
translation we mean that at each leaf node n, n.id\leftarrow (n.id+s) mod 64, where s is an
integer. QLT is run with \=Qg = m, \bfitl = 0, \bfitu = \bfite , \bfitw = \=\bfitrho = \bfite , and SelectX is 2-norm
minimization, and the output density profile is recorded. (Here, values of density and
mass per cell are the same because we use unit-length cells.) This is done for each
possible translation s and for m = 1 to 32. The profiles for each m are averaged over
s; these are the profiles in the figure. In all three panels, the x axis is the cell index.
In the top panel, the y axis is the total mass m. The top panel shows contours (gray
lines) of the density as a function of cell index and m. The gray background shows
where values are exactly 0. The bottom two panels show average profiles (thick lines);
these are slices of the contour plot for m = 16 and 24. In addition, each shows the
mass redistribution for the value of s that illustrates the worst case (dashed line), the
ideal mass redistribution (gray thin solid line), the ensemble minimum and maximum
(light gray solid), and the ensemble middle 50\% (dark gray solid).

Ideally, mass is redistributed no farther than r(m) \equiv \lceil (m - 1)/2\rceil cells away from
cell 32; the black lines with stair-step pattern in the top panel show r(m). In this
experiment, QLT redistributes mass at most four times that far. Let k be the power
of 2 such that 2k - 1 < m \leq 2k. Consider the predecessor node of the leaf node for
cell 32 that is k levels above the leaf node; let this be node p. Outside of the tree
rooted at p, all node problems are already satisfied after LeavesToRoot finishes.
Node p's problem is feasible, which implies that all its descendent nodes' problems
are feasible; see part 3 of the proof of Proposition 5.1 in Appendix A.3. Thus, mass
is redistributed only within the tree rooted at p. This subtree spans 2k adjacent cells.
Because of the translation s, cell 32 can occur in any position of these adjacent cells;
therefore, mass can move up to 2k  - 1 cells from cell 32 in either direction. In the
worst case, 2k - 1 = m  - 1; then 2k  - 1 \leq 4r  - 1. For m a power of 2, each cell in
the cells spanned by the tree rooted at p is given mass 1. Combined with averaging
over tree translations, the profile is a triangle, as illustrated by the middle panel of
Figure 5.2(b). The general case is illustrated in the bottom panel.

6. Implementation. CDRs can be used locally or globally. For example, a user
may call QLT as a global CDR. QLT calls a primary CDR at each node of its tree
to solve a local subproblem. As another example, a field \=\bfitQ may aggregate multiple
data from another field \bfitQ . After the global CDR is run, a local CDR is applied to
each aggregate set. A local CDR is intended to run within a single process. Since
the local CDR does not require communication, and the CDR acts on local data that
likely fits in the fastest level of memory, it can have greater computational complexity
than a global CDR without negative impact; e.g., it can be iterative. This section
focuses on communication efficiency of global CDRs. We find thatQLT has the lowest
communication volume.

6.1. Communication. Global CDRs fundamentally rely on one or more batch
all-to-all reductions (BARs). Often this BAR can be implemented using the Message
Passing Interface (MPI) function MPI Allreduce. The cost of CDR computations is
generally negligible compared with the data movement cost. Thus, a CDR's perfor-
mance can be characterized by two quantities: the number of BARs and the commu-
nication volume. We characterize the second quantity by the number of scalars per
tracer transmitted along a directed edge of the reduction tree. For MPI Allreduce,
the total is thus twice the number of scalars per tracer, since the same number of
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C178 BRADLEY, BOSLER, GUBA, TAYLOR, AND BARNETT

scalars is communicated from leaves to root of the reduction tree as from root to
leaves. In contrast, QLT uses a different number of scalars in the two directions.

Several implementations are possible for each algorithm. Our purpose in this
section is to characterize the minimal number of BARs a CDR requires, even if another
implementation has smaller communication volume. For example, an algorithm might
be implemented with one BAR. But another approach might use one or two, depending
on the outcome of the first, and on average use slightly more than one BAR but with
lower total communication volume.

A complicating factor is that MPI Allreduce and related global collectives may
be implemented using special hardware support. In such a case, a method that can be
implemented using MPI global collective functions will be substantially faster than one
implemented according to a custom tree and asynchronous point-to-point functions,
for the same communication volume. In this case, QLT performance will be sub-
stantially worse than limited-reduction CDR performance, except when the number
of tracers is sufficiently large to make bandwidth the dominant factor. For reference,
the E3SM version-1 climate model [13] has 72 vertical levels and 40 tracers. A ver-
tically Lagrangian coordinate decouples tracer transport and property preservation
to 72 horizontal problems, although subsets of vertical levels can be combined in the
property preservation step as a design choice. Thus, there are as many as 2880 prop-
erty preservation problems to solve simultaneously, with reduction message size then
a CDR-dependent constant times this number.

In previous sections, we treated the quantity b \equiv \=Qg  - \bfite \cdot \=\bfitQ \ast 
as provided by

the caller. In practice, the caller has not computed \bfite \cdot \=\bfitQ \ast 
; thus, the CDR must do

so. In the case of a simulation in which advection steps are alternated with source
term computations, \=Qg changes in the course of the simulation and so also must be

computed by reducing \=\bfitQ 
 - 
, the field at the previous time step after the source term

has been applied. Thus, in practice, one of \=\bfitQ 
\ast 
or \=\bfitQ 

 -  - \=\bfitQ 
\ast 
must be reduced in the

CDR's first (or only) BAR. In some cases, the vector \=\bfitrho must be reduced and, similarly,
the weight vector \bfitw . \=\bfitrho is, and \bfitw may be, the same for all tracers, and \bfitw may even be
set equal to \=\bfitrho . In each of these cases, the BAR should of course include these vectors
just once. We continue to describe computation and communication in terms of just
one tracer; the implementation for more than one tracer should batch computation
and communication in each step.

ClipAndAssuredSum can be implemented with one BAR. The BAR sums, sep-

arately, four vectors: \=\bfitQ 
 -  - \=\bfitQ 

\ast 
(to compute b), \=\bfitx (to compute m and \bfitv ), and \bfitl and \bfitu 

(to compute \bfitv ). A sequence of two BARs would require summing just one of \bfitl and \bfitu .
This is an example of a trade-off in number of BARs and total communication volume.
In addition, it illustrates a simple technique to minimize BAR counts: if a variable's
value is a result of a BAR and can take one of only a small set of values, then account
for all of these possible values in a single BAR. In the case of ClipAndAssuredSum,
the sign of m, the mass discrepancy, can take one of two values; its value determines
which of \bfite \cdot \bfitl and \bfite \cdot \bfitu is used.

Now we consider ReconstructSafely with SelectX = ClipAndAssured-
Sum for cases in which \scrT (b, \bfitl ,\bfitu ) is not assuredly nonempty. One implementation
approach is to use the same first BAR as before. Then, if \bfite \cdot \bfitl \leq b \leq \bfite \cdot \bfitu does not
hold, solve the safety problem, which requires at least one additional BAR. This is
quite likely the more efficient approach in practice. Nonetheless, we describe how to
implement this method with one BAR total. The trade-off is that the BAR has 8
scalars per tracer, up from 4, although one scalar is shared by all tracers. The addi-
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PROPERTY PRESERVATION IN TRACER TRANSPORT C179

tional reductions are \bfite \cdot \=\bfitQ  - 
and \bfite \cdot \=\bfitQ \ast 

instead of \bfite \cdot ( \=\bfitQ  -  - \=\bfitQ 
\ast 
), \bfite \cdot \=\bfitrho , min \bfitq min(\=\bfitrho , \=\bfitQ 

\ast 
, \bfitl ),

max \bfitq max(\=\bfitrho , \=\bfitQ 
\ast 
,\bfitu ). After the first BAR, if \bfite \cdot \bfitl \leq b \leq \bfite \cdot \bfitu , then \bfitx is immediately

returned. If at least one inequality is violated, then, depending on sign, \bfitu s or \bfitl s is
formed. Assume \bfitu s is needed. Then b \leq \bfite \cdot \bfitu s is evaluated; the quantity on the
right-hand side can be computed using data from the first BAR. If b > \bfite \cdot \bfitu s (even
the safety set is empty), ReconstructSafely returns a result requiring no addi-
tional BAR. If b \leq \bfite \cdot \bfitu s, then ClipAndAssuredSum is called with new data. This
time, it is assured that ClipAndAssuredSum can return a valid point. The special
inputs in this case mean ClipAndAssuredSum has all the reduced values it needs
already available, and so an implementation specialized for this case will perform no
additional reduction. In summary, a total of one BAR is required, with 8 scalars per
tracer per edge, or a little above 7 when \=\bfitrho is amortized over many tracers.

ClipAndAssuredGenericSum is more complicated to implement than Clip-
AndAssuredSum. We omit a complete discussion of details, as they follow the same
ideas. However, there is one new feature of the problem. ClipAndAssuredGeneric-
Sum must perform two global collectives except in the case that even the safety set is
empty. This is because one cannot know whether \bfitw will push \=\bfitx out of bounds until
after m is computed. Thus, at the very least, a second global collective in the form
of a broadcast must be used to determine either that each xi is in bounds or that at
least one is out, according to which a coordinated action can be taken. As long as a
second global collective is required, it makes sense to use a BAR. Unless the caller's
weight vector computation itself requires a global collective that cannot be batched
with the first BAR, two BARs in total are needed. If ReconstructSafely is used
with SelectX = ClipAndAssuredGenericSum, additional scalars are needed, but
there are still at most only two BARs.

QLT is already defined in terms of the communication equivalent of one reduction

followed by one broadcast. In LeavesToRoot, \=\bfitQ 
\ast 
, \=\bfitrho , \bfitl , \bfitu , \bfitw , and \=\bfitQ 

 - 
are separately

summed. In RootToLeaves, one scalar is communicated per tree edge, bn. Thus,
QLT communicates 6 or 7 scalars per tracer per two edges (up and down the tree),
depending on \bfitw , or on average 3 or 3.5 per edge; or, if \=\bfitrho and \bfitw are shared among
many tracers, a little above 2.5.

In summary, ClipAndAssuredSum, ClipAndAssuredGenericSum, and Re-
constructSafely using one of these as SelectX can be implemented using one or
two calls to MPI Allreduce. QLT only ever requires one BAR equivalent and uses
less than half the communication volume of even ClipAndAssuredSum. But the
reduction tree must be implemented as part of QLT because QLT stores values and
performs computations at each node in the tree.

6.2. Level scheduling in QLT. In this subsection, let a degree of freedom
(DOF) correspond to one entry of \bfitx . A practical implementation of QLT should not,
and in a distributed environment cannot, be recursive, as QLT is in Algorithm 5.1. A
straightforward distributed implementation of QLT forms a tree over the DOFs such
that all DOFs in a process are covered by a subtree of the QLT tree. However, often
one wants invariance of the solution to MPI process decomposition. Thus, the tree of
DOFs cannot depend on the process decomposition.

The key tool to solve this problem is level scheduling ; see, e.g., [28, eq. (18)]. A
level schedule constructs a sequence of levels. A level is a set of nodes that do not
depend on each other but depend on nodes in levels earlier in the sequence. For this
reason, this tool is also useful to expose intraprocess parallelism; computations for
nodes in a level may proceed in parallel. Similarly, nodes in a level can fill a single
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Locality Sinusoid Rectangle Triangle Bell Gaussian

Fig. 7.1. 1D functions used in numerical experiments.

Table 7.1
Results for the randomized 1D periodic simulations for the Sinusoid initial condition.

 - log10 l2 rel. err.  - log10 l1 rel. err.  - log10 linf rel. err.
Mesh CDR 10\% 50\% 90\% 10\% 50\% 90\% 10\% 50\% 90\%

U
n
if
o
rm

Cubic 6.15 5.47 5.12 6.11 5.43 5.08 6.21 5.53 5.18
CAAS 4.29 3.76 3.51 4.79 4.19 3.93 3.67 3.22 3.03
BC 4.25 3.71 3.45 4.64 4.03 3.73 3.65 3.19 2.99
LS(1) 4.28 3.76 3.51 4.86 4.24 3.94 3.67 3.22 3.03
QLT(1) 4.26 3.93 3.79 4.76 4.32 4.16 3.70 3.40 3.28
QLT(BC) 4.27 3.89 3.75 4.78 4.29 4.14 3.71 3.39 3.29

P
er
b
u
rb

ed

Cubic 5.76 5.41 5.14 5.72 5.36 5.10 5.78 5.46 5.20
CAAS 4.03 3.72 3.52 4.52 4.17 3.94 3.43 3.17 3.02
BC 3.98 3.67 3.46 4.32 3.97 3.75 3.41 3.15 2.98
LS(1) 4.03 3.72 3.52 4.55 4.19 3.95 3.43 3.17 3.01
QLT(1) 4.09 3.88 3.76 4.53 4.27 4.12 3.53 3.35 3.25
QLT(BC) 4.09 3.86 3.75 4.51 4.24 4.11 3.53 3.35 3.25

send buffer for each communication partner, and then this monolithic buffer may be
sent after the level's computations are complete. This method minimizes the number
of messages.

Thus, a QLT implementation should have an initialization phase in which the
tree is level-scheduled. Then these levels are used to allocate and organize send
and receive buffers, with offsets into these for each participating node. Finally, each
invocation of QLT uses these established data structures to implement LeavesTo-
Root and RootToLeaves. Each SelectX (through ReconstructSafely) call
is independent of the others and associated with a single node; hence these can be
computed in parallel.

7. Numerical studies. In this section, we examine the quality of corrections
provided by the CDRs. We do not provide performance results for implementations;
performance is well characterized by number and sizes of communication rounds. QLT
is a rich enough algorithm that its implementation could be a topic of another study.
The performance study in [7] includes the use of our first implementation of QLT.

7.1. One-dimensional problems. In each 1D experiment, a function is peri-
odically translated by a uniform flow field. Figure 7.1 shows the 1D initial conditions
we use. Relative to a domain of length 1, the Locality function has a Rectangle func-
tion of width 0.2; the Rectangle, Triangle, and Bell functions each have shape of width
0.55; and the Gaussian's standard deviation is 0.1485. The Bell is one half of a sinu-
soid's period. The conventional cubic interpolation semi-Lagrangian (ISL) method is
used: a node (equivalently, a cell center) is translated to its departure point, and the
four surrounding Eulerian nodes on the departure mesh provide a cubic interpolant.
In some cases, a linear interpolant based on the two surrounding points is used.

After the ISL step, a CDR is applied to recover properties. When referring
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Fig. 7.2. Results for the randomized 1D periodic simulations for the Sinusoid initial condition.
The top row is for the uniform mesh, and the bottom row is for the perturbed mesh. The left column
plots log10 of the average pointwise relative error. The middle column plots log10 of the average
pointwise relative mass redistribution. See text for definitions. The right column plots the cumulative
density of the l2 relative error. In the bottom row, the initial condition is plotted for reference. In
the left and middle columns, for QLT(BC), the middle 90\% (light gray) and middle 50\% (dark gray)
of the ensemble are shown as filled regions.

to weights, we exclude a cell-length factor. For example, the unit weight vector is
multiplied by the cell-length vector. The CDRs are as follows: ClipAndAssured-
Sum, labeled CAAS; the algorithm of [3], labeled BC; 2-norm minimization with
unit weights, labeled LS(1); QLT, with unit weights, labeled QLT(1); and QLT with
the full unsigned weight vector of [3], labeled QLT(BC). QLT(BC) uses an unsigned
version of the BC weight vector, \bfitw = | \bfitq H  - \bfitq L| 3, where \bfitq H is the result of applying
the cubic ISL step and \bfitq L is the result of applying the linear ISL step. The second
part of the BC algorithm is to discard the signed weights associated with a correction
of the wrong direction with respect to recovering mass conservation; in QLT(BC),
this second part is unnecessary. The original BC algorithm is not assured to provide
a feasible correction even if one is possible, but QLT(BC) is. In our experiments, we
chose problems such that BC always succeeds. We could have instead wrapped BC
in ClipAndAssuredGenericSum, but this would complicate interpretation of the
BC data. QLT(BC) makes use of the ability of ReconstructSafely, QLT, and
the 2-norm minimization implementation to handle 0 weight values. We also include
cubic ISL with no property preservation, labeled Cubic.

Two mesh types are used. Mesh types are labeled Uniform, for a uniform mesh,
and Perturbed. The perturbed mesh starts with a uniform set of cells; then each cell
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Fig. 7.3. Results for the randomized 1D periodic simulations for the Locality initial condition.

Table 7.2
Results for the randomized 1D periodic simulations for the Locality initial condition.

 - log10 l2 rel. err.  - log10 l1 rel. err.  - log10 linf rel. err.
Mesh CDR 10\% 50\% 90\% 10\% 50\% 90\% 10\% 50\% 90\%

U
n
if
o
rm

Cubic 1.14 1.04 0.98 1.62 1.49 1.38 0.62 0.52 0.49
CAAS 1.11 1.00 0.95 1.68 1.48 1.39 0.52 0.48 0.45
BC 1.09 0.99 0.94 1.67 1.48 1.38 0.51 0.47 0.44
LS(1) 1.11 1.00 0.95 1.66 1.48 1.38 0.52 0.48 0.45
QLT(1) 1.15 1.03 0.97 1.69 1.51 1.42 0.59 0.50 0.46
QLT(BC) 1.11 1.02 0.98 1.65 1.51 1.42 0.57 0.50 0.46

P
er
b
u
rb

ed

Cubic 1.11 1.03 0.98 1.59 1.48 1.39 0.61 0.53 0.49
CAAS 1.06 0.99 0.95 1.56 1.45 1.38 0.55 0.50 0.46
BC 1.02 0.96 0.93 1.53 1.42 1.36 0.52 0.47 0.43
LS(1) 1.08 1.00 0.96 1.58 1.46 1.38 0.56 0.49 0.45
QLT(1) 1.10 1.02 0.98 1.60 1.49 1.41 0.58 0.51 0.46
QLT(BC) 1.11 1.04 0.99 1.64 1.53 1.44 0.59 0.51 0.46

boundary is randomly moved by up to 1/4 the uniform cell size in either direction.
On a uniform mesh with a uniform flow field, the linear and cubic ISL steps are mass
conserving; on a perturbed mesh, they are not.

The first experiment runs 104 repetitions of the following procedure for each mesh
type. A 101-cell mesh is chosen---either the fixed uniform one or a new randomly
perturbed mesh. A random number of time steps in the range [10, 50] is chosen to
translate the shape one cycle; this range corresponds to a CFL number of between
approximately 10 and 2, representative of typical SL time steps. 101 cells rather
than 100 are used because 101 is prime, preventing the time step from dividing the
number of cells and polluting the data with perfect translations of the function in
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the case of a uniform mesh. A tree over the mesh is constructed and translated by a
random number in [0, 100]. Then a simulation is run for each CDR, and results are
accumulated. The purpose of randomization is to reveal average behavior.

Let y0 be the initial condition and yf the final profile. Data collected include the
following: l2, l1, and l\infty relative errors are computed as \| yf  - y0\| p/\| y0\| p for p the
norm. Pointwise relative error is computed as | yf  - y0| /\| y0\| \infty . Finally, pointwise
relative mass redistribution is computed as follows: At each time step k, the absolute
value of the pointwise difference between the CDR-corrected field ykCDR and the un-
corrected field yk is recorded: \Delta yk \equiv | ykCDR  - yk| . Then two linear interpolations are
performed, although these could be combined into one linear interpolant. First, \Delta yk

is linearly interpolated to a 512-cell uniform mesh. Second, the result is advected in

one step to time 0 using the linear ISL. Let the result be \widetilde \Delta yk. \widetilde \Delta yk is accumulated
over all time steps k = 1, 2, . . . ,K. The pointwise relative mass redistribution is then

(K \| y0\| \infty ) - 1
\sum K

k=1
\widetilde \Delta yk. We find that the resulting plots are visually nearly identical

when 1024 cells are used instead; to store the ensemble data, we thus chose 512 cells.
Figures 7.2 and 7.3 and Tables 7.1 and 7.2 display results for the Sinusoid and

Locality initial conditions (ICs), respectively. The Sinusoid IC reveals behavior of
the CDR on a smooth function; the Locality IC reveals that on discontinuous data.
The Locality IC differs from the Rectangle IC by having a background sinusoid. The
purpose of this background is to avoid artificially local mass redistribution simply
because the local lower and upper bounds on the mixing ratio are computed to be the
same; the sinusoid assures the bounds are separated by a positive value.

In each of Figures 7.2 and 7.3, the top panels are for the uniform mesh, and the
bottom is for the perturbed. The left column shows log10 of the average pointwise
relative error, and the middle shows log10 of the average pointwise mass redistribution.
In addition, for QLT(BC), the middle 90\% (light gray) and middle 50\% (dark gray)
of the ensemble are shown as filled regions. The initial condition is plotted as a gray
solid curve in the same axes for reference. The right column shows cumulative density
of l2 relative error. Tables 7.1 and 7.2 report the 10, 50, and 90 percentiles for each
of the error norms; for text compactness,  - log10 of each value is taken.

In Figure 7.2, middle column, mass is redistributed principally at the extrema
of the sinusoid, as these extrema are modified by the CDR. For the uniform mesh,
both QLT simulations redistribute mass within just these peaks, since the ISL is mass
conserving. BC encourages mass redistribution to localize to these peaks, but there is
still a spread of mass. For the perturbed mesh, QLT(1) redistributes the global mass
discrepancy essentially uniformly, roughly matching CAAS and LS(1). QLT(BC) has
some mass localization resulting from the BC weights. The right column and Table 7.1
show that both QLT CDRs give the most accurate solutions of the property preserving
ones, but all property preserving solutions are substantially less accurate than Cubic
because of limiting the smooth extrema.

In Figure 7.3, middle column, mass is redistributed principally at the extrema of
the background sinusoid, as in Figure 7.2, and also at the rectangle function's edges.
Again, on a uniform mesh, for which the ISL is mass conserving, both QLT simulations
redistribute mass within just these peaks. On the perturbed mesh, QLT(1) must
again redistribute the global mass discrepancy roughly uniformly, whereas QLT(BC)
benefits from the BC weights. Since the initial condition is no longer smooth, the
CDR solution can be as accurate as or even more accurate than the Cubic one.

Figure 7.4 plots convergence data for the 1D periodic translation problem on a
uniform mesh. The coarsest mesh has 17 cells, and 7 time steps are used. Each
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Fig. 7.4. Convergence for the 1D periodic translation problem: log2 l2 error versus refinement
level. Each refinement doubles the number of cells and the number of time steps. Triangles with
text slope values provide reference convergence rates.

refinement level doubles the number of cells and time steps. One cycle is run, as con-
vergence data may be obtained at any cycle boundary. QLT provides more accurate
solutions than the other CDRs. In the case of the nonsmooth initial conditions, the
cubic ISL with QLT is also about as accurate as the cubic ISL with no CDR. For
sufficiently smooth initial conditions, the cubic ISL has third-order accuracy, whereas
a CDR limits the solution to second-order accuracy.

7.2. Sphere. In this section, we construct a standalone passive tracer test frame-
work that exercises the three properties of mass conservation, shape preservation,
and tracer consistency, and we use it to examine CDR solution quality. In the test
framework, the mesh is a cubed-sphere Gauss--Lobatto--Legendre (GLL) mesh as in
HOMME [11]. A tracer mixing ratio is advected using the classical SL method spe-
cialized to this setting: the interpolant is the degree-p GLL interpolant [11]. This
interpolant can in general cause the method to be unstable, but for p = 2, we have
observed that it is empirically linearly stable across a broad range of problems; outside
the scope of this paper, we have determined it to be stable analytically for the problem
of one-dimensional periodic translation on a uniform mesh. To exercise tracer trans-
port coupled to a different discretization for the total mass continuity equation, we
solve for total density using the cell-integrated Jacobian-combined transport method
described in [7]. Then the tracer densities must be made consistent with respect to
this total density field.

HOMME implements a continuous Galerkin spectral element method. But in
each time stage, calculations are performed in each element separately, essentially
treating the basis as discontinuous. Then the discrete stiffness summation (DSS) op-
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Fig. 7.5. (a) Relative l2 error and (b) mass redistribution measured by the 1-norm for the
sphere test cases. Each refinement halves the cell length and time step. A plot corresponds to a flow
field: rigid rotation, divergent flow, and nondivergent flow. Three initial conditions are used: slotted
cylinders, cosine bells, and Gaussian hills. The results for each method cluster by initial condition.
Thus, in each plot, there are three clusters---one for each initial condition. Triangles with text slope
values provide reference convergence rates.

erator, which maintains the three properties, restores continuity [29]. This procedure
minimizes communication among processes. We follow this approach in our tests, as
it is efficient and natural for the cubed-sphere GLL mesh. In particular, CDR is per-
formed at two levels: globally among elements, and then locally within each element
on the (p+ 1)2 nodes. In the global phase, each index of the vector to which CDR is
applied corresponds to the cell tracer mass. The global phase redistributes mass as
necessary to make each cell-local problem feasible.

In an SL time step, the cell nodes are advected backward in time according to
the flow field; GLL interpolation transfers the mixing ratio field at the previous time
step to these advected points; bounds on the mixing ratio are set as the extrema
of the values at the nodes supporting interpolation; cell tracer masses and bounds
are computed and used to set the global CDR problem; the global CDR, and then
the cell-local CDR, problems are solved; finally, the DSS operator is applied. In
our simulations, only the global CDR is varied; the cell-local CDR is always 2-norm
minimization. Because the cell-local CDR will resolve many of the discrepancies, we
can expect differences in the solutions among CDR methods to be less pronounced
than in the 1D study.

We run three passive tracer simulations: rigid rotation and the divergent-flow and
nondivergent-flow cases described in [19, 23]. In each, the Gaussian hills, cosine bells,
and slotted cylinder ICs described in [23] are used. Essentially exact flow is computed
using an adaptive Runge--Kutta method with a tight tolerance. The coarsest mesh is
a cubed sphere with ne\times ne elements per face, ne = 18. For this mesh, we use 72 time
steps. Each refinement level doubles ne and the number of time steps. As our purpose
here is not to evaluate a particular tracer transport method, but rather to evaluate
just the CDR, we omit the full set of diagnostics described in [23]. Numerical checks
show that each tracer in each case conserves mass globally to at least 12 digits at the
end of 12 days and is bounded by the initial global extrema to at least 14 and usually
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C186 BRADLEY, BOSLER, GUBA, TAYLOR, AND BARNETT

15 digits. We evaluate the global 2-norm minimization, ClipAndAssuredSum, and
QLT CDRs, and also the case of no CDR.

Figure 7.5(a) plots l2 relative error in the tracer mixing ratio field versus mesh
refinement level. Figure 7.5(b) plots the relative total amount of mass redistributed
among cells in the simulation. This value is the integral, over both the sphere and the
12-day simulation period, of the absolute value of the global-phase CDR correction,
divided by the tracer's global mass. Hence it captures the effects of simultaneous
discretization refinement in space and time. Each plot shows results for a particular
flow field and for all initial conditions. Curves cluster by initial conditions. The left
plot in Figure 7.5(a) labels these clusters; each other plot has the same pattern of
clusters. For the essentially infinitely differentiable Gaussian hills initial conditions,
all CDRs produce nearly identical errors and redistribute nearly identical amounts of
mass. The rigid rotation field with this initial condition shows that the method's order
of accuracy is 2. The total amount of mass redistributed over the 12 days diminishes
at second order as well. For the discontinuous slotted cylinders initial conditions,
the error produced by each CDR is nearly identical, but QLT redistributes more
mass, consistent with its quasi-local redistribution pattern. For the once continuously
differentiable cosine bells IC, all CDR solutions are more accurate than the field with
no CDR (``None""). The QLT solution is slightly more accurate than the other CDR
solutions and redistributes more mass.

8. Summary and conclusions. We discussed three classes of constrained den-
sity reconstructors to solve the tracer transport property preservation problem. They
are particularly well suited to remap-form semi-Lagrangian tracer transport meth-
ods. They enable such transport methods to be coupled to the atmospheric dynam-
ical equations consistently essentially regardless of these equations' discretizations,
and the resulting tracer transport component to conserve mass and preserve shape.
The primary CDRs provide a mass-bounded correction to the primary constraint set.
These can be used within an outer algorithm that assures that a correction within a
backup safety constraint set is computed if the primary set is empty. The combination
of semi-Lagrangian tracer transport and an efficient CDR provides an efficient tracer
transport component in the atmospheric dynamical core.

QLT is the most general of the algorithms discussed. It can use any primary
CDR, wrapped by ReconstructSafely, as a node subproblem solver, as long as
this solver satisfies correctness and solution magnitude conditions. QLT requires a
tree over the mesh. The tree is general; each node can have an arbitrary number of
child nodes. Hence QLT can produce subproblems as small as two-dimensional or,
in the limit of a tree having exactly one node, the global problem. QLT has the full
safety guarantees ReconstructSafely provides and returns a correction whose 1-
norm is bounded by (3.3). If the subproblem solver does not perform communication,
which is the intended use case, then QLT uses lower communication volume than any
other CDR discussed. If QLT is used to correct an already mass conserving tracer
transport discretization, its correction redistributes mass quasi-locally.

Appendix A. Proofs.

A.1. Limited-reduction algorithms.

Proof of Proposition 3.1. Assume m \geq 0. For condition (i) in the definition of \scrT ,
\bfite \cdot \bfitx = \bfite \cdot \=\bfitx + m\bfite \cdot \bfitv = \bfite \cdot \=\bfitx + (b  - \bfite \cdot \=\bfitx )[\bfite \cdot (\bfitu  - \=\bfitx )/\bfite \cdot (\bfitu  - \=\bfitx )] = b. For (ii), if
m = 0, then \bfitx = \=\bfitx \in \scrT . If m > 0, xi = \=xi+mvi = \=xi+(b - \bfite \cdot \=\bfitx )(ui - \=xi)/\bfite \cdot (\bfitu  - \=\bfitx )
\leq \=xi + (\bfite \cdot u - \bfite \cdot \=\bfitx )(ui  - \=xi)/\bfite \cdot (\bfitu  - \=\bfitx ), where the last step follows from b \leq \bfite \cdot \bfitu .
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PROPERTY PRESERVATION IN TRACER TRANSPORT C187

Hence xi \leq \=xi + (ui  - \=xi) = ui. The case m < 0 follows by symmetry.

We need some relations in the proof of Proposition 3.3. The parameter lists are
omitted from d, B, Bl, Bu.

Lemma A.1. If \scrT (b, \bfitl ,\bfitu ) \not = \emptyset , then the following relations hold:
(a) b \geq 0 implies d \geq 0, and b \leq 0 implies d \leq 0.
(b) | d| \leq | b| .
(c) If b \geq 0, then Bu \leq B  - d.

Proof. In the following, we use that \scrT \not = \emptyset implies \bfite \cdot \bfitl \leq b \leq \bfite \cdot \bfitu .
(a) 0 \leq b \leq \bfite \cdot \bfitu implies d \geq 0 and similarly for the opposite sign.
(b) If d = 0, then the bound follows. If d = \bfite \cdot \bfitl , then \bfite \cdot \bfitl \leq b implies the bound.

If | d| =  - \bfite \cdot \bfitu , then b \leq \bfite \cdot \bfitu implies | d| =  - \bfite \cdot \bfitu \leq  - b = | b| .
(c) First, b \geq 0 implies d = max\{ 0, \bfite \cdot \bfitl \} by (a). Second, \bfite \cdot \bfitl \leq \sum 

i:li>0 li = Bl,
which implies d \leq Bl. Hence B = Bu +Bl \geq Bu + d, and so Bu \leq B  - d.

Proof of Proposition 3.3. First we prove relation (3.2). Clip returns \=\bfitx such that
if \=xi < 0, then \=xi = ui; if \=xi > 0, then \=xi = li. Hence \bfite \cdot \=\bfitx =

\sum 
i:li>0 li +

\sum 
i:ui<0 ui =

Bl - Bu and \| \=\bfitx \| 1 = Bl+Bu. Supposem \geq 0. As \bfitx \in \scrT and \bfitz \geq 0, if \=xi = ui < 0, then
zi = 0. Hence zi > 0 only if \=xi \geq 0, and the modifications in entry i in that case have
the same sign. Hence | xi| = | \=xi| +mzi = | \=xi| + | mzi| . Hence \| \bfitx \| 1 = Bl+Bu+ | m\bfite \cdot \bfitz | .
\bfite \cdot \bfitz = 1 and m = b - \bfite \cdot \=\bfitx = b - Bl + Bu. Hence \| \bfitx \| 1 = b+ 2Bu. The case m \leq 0
follows similarly.

Now we prove relation (3.3). Suppose m \geq 0. Suppose b \geq 0. Then \| \bfitx \| 1 =
b + 2Bu \leq b + 2(B  - d) = b + 2(B  - | d| ) by (3.2), then Lemma A.1(c), and then
Lemma A.1(a). Suppose b < 0. Then

\| \bfitx \| 1 = b+ 2Bu \leq  - | b| + 2B by (3.2) and since Bu \leq B

\leq  - | d| + 2B by Lemma A.1(b)

\leq (| b|  - | d| ) - | d| + 2B again by Lemma A.1(b)

= | b| + 2(B  - | d| ).

The case m \leq 0 follows by symmetry.

The following two lemmas prove the statements concerning \alpha in Proposition 3.4.

Lemma A.2. If \scrT (b, \bfitl ,\bfitu ) \not = \emptyset and m \not = 0, then MakeBestConvexCombina-
tion returns 0 \leq \alpha \leq 1.

Proof. \alpha \leq 1 by construction. As \bfitv is the weight vector used in ClipAnd-
AssuredSum, by Proposition 3.1, \bfitl \leq \=\bfitx +m\bfitv \leq \bfitu . Hence (di - \=xi - mvi)/m \geq 0 for
either m > 0 and \bfitd = \bfitu or m < 0 and \bfitd = \bfitl . Hence \alpha \geq 0.

Lemma A.3. MakeBestConvexCombination finds the maximal \alpha \leq 1.

Proof. Consider the case m > 0. We need \=\bfitx +m\bfitv + \alpha m(\bfitz  - \bfitv ) \leq \bfitu . (As 0 \leq \alpha 
and \bfitw ,\bfitv \geq 0, the lower bound cannot be violated.) At index i, there are two cases
for \alpha i. First, zi \leq vi; then \alpha \leq 1 \equiv \alpha i satisfies xi \leq ui. Second, zi > vi, and so we
need \alpha \leq (ui  - \=xi  - mvi)/[m(zi  - vi)] \equiv \alpha i. The case m < 0 follows by symmetry.
These conditions must hold for all i, and so MakeBestConvexCombination must
return the minimum of these \alpha i and 1, which it does.

Proof of Proposition 3.4. For condition (i) in the definition of \scrT (b, \bfitl ,\bfitu ), \bfite \cdot \bfity =
\alpha \bfite \cdot \bfitz + (1 - \alpha )\bfite \cdot \bfitv = 1 implies \bfite \cdot \bfitx = \bfite \cdot \=\bfitx + (b - \bfite \cdot \=\bfitx )\bfite \cdot \bfity = b. For (ii), if m = 0 or
\delta = 0, the result follows immediately. Thus, suppose m > 0 and \delta > 0; we must show
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C188 BRADLEY, BOSLER, GUBA, TAYLOR, AND BARNETT

\bfitx \leq \bfitu . 0 \leq \alpha \leq 1 by Lemma A.2. If \alpha = 0, then ClipAndAssuredGenericSum is
the same as ClipAndAssuredSum, and the result follows by Proposition 3.1. Thus,
suppose 0 < \alpha \leq 1. At index i, xi = \=xi + myi = \=xi + m\alpha (zi  - vi) + mvi. First,
suppose zi \leq vi; then xi \leq \=xi + mvi \leq ui, the final inequality by Proposition 3.1.
Second, suppose zi > vi. As \alpha \leq (ui  - \=xi  - mvi)/[m(zi  - vi)] by construction in
MakeBestConvexCombination,

xi \leq \=xi +m
ui  - \=xi  - mvi
m(zi  - vi)

(zi  - vi) +mvi

= \=xi + (ui  - \=xi  - mvi) +mvi = ui.

The case m < 0 follows by symmetry.

A.2. Optimization problems. We use the KKT conditions [15] for these prob-
lems. The Lagrangian for \scrP w2 is

\scrL w2 \equiv 
1

2
\bfitomega \cdot \bfitx 2 + \lambda (\bfite \cdot \bfitx  - b) + \bfitmu \cdot (\bfitl  - \bfitx ) + \bfiteta \cdot (\bfitx  - \bfitu );

thus, the KKT conditions are as follows:

\bfits \equiv \bfitomega \bfitx + \lambda \bfite  - \bfitmu + \bfiteta = 0;

\bfitl \leq \bfitx \leq \bfitu , \bfite \cdot \bfitx = b;

\bfitmu (\bfitl  - \bfitx ) = 0, \bfitmu \geq 0; \bfiteta (\bfitx  - \bfitu ) = 0, \bfiteta \geq 0.

The 1-norm problems need to be reformulated to avoid differentiating | xi| at
xi = 0 in our analysis. A standard approach [15] decomposes \bfitx into positive and
negative parts, \bfitx = \bfitp  - \bfitn , \bfitp ,\bfitn \geq 0. Then the optimization problem for \scrP w1 is
written min\bfitp ,\bfitn \bfitomega \cdot (\bfitp +\bfitn ) subject to \bfitp  - \bfitn \in \scrT (b, \bfitl ,\bfitu ), \bfitp ,\bfitn \geq 0. The Lagrangian is

\scrL w1 \equiv \bfitomega \cdot (\bfitp + \bfitn ) + \bfitphi \cdot (\bfitx  - \bfitp + \bfitn ) - \bfitalpha \cdot \bfitp  - \bfitbeta \cdot \bfitn 
+ \lambda 1(\bfite \cdot \bfitx  - b) + \bfitmu \bfone \cdot (\bfitl  - \bfitx ) + \bfiteta \bfone \cdot (\bfitx  - \bfitu ),

and the KKT conditions are as follows:

\bfits 1 \equiv \bfitphi + \lambda 1\bfite  - \bfitmu \bfone + \bfiteta \bfone = 0;

\bfitl \leq \bfitx \leq \bfitu , \bfite \cdot \bfitx = b;

\bfitmu \bfone (\bfitl  - \bfitx ) = 0, \bfitmu \bfone \geq 0; \bfiteta \bfone (\bfitx  - \bfitu ) = 0, \bfiteta \bfone \geq 0;

\bfitalpha \bfitp = 0, \bfitalpha ,\bfitp \geq 0, \bfitomega  - \bfitphi  - \bfitalpha = 0;

\bfitbeta \bfitn = 0, \bfitbeta ,\bfitn \geq 0, \bfitomega + \bfitphi  - \bfitbeta = 0.

The unweighted Lagrangian \scrL 1 and KKT conditions are obtained by replacing \bfitomega 
with \bfite in these expressions. Because the solution set in tuples (\bfitp ,\bfitn ) is 1-1 with
\bfitx \in \scrT w1(\bfitomega , b, \bfitl ,\bfitu ) by the relation \bfitx = \bfitp  - \bfitn , we refer interchangeably to \bfitx and \bfitp  - \bfitn .

Proof of Proposition 4.1. We carry out the full proof for \bfitx \in \scrT w2 and then discuss
differences in the case of \bfitx \in \scrT w1. The method of proof is to show that for \bfitx \in \scrT w2,
we can choose \bfitp , \bfitn , \bfitphi , \bfitalpha , \bfitbeta , \lambda 1, \bfitmu \bfone , \bfiteta \bfone such that the KKT conditions for \scrP 1 are
satisfied. If these conditions are satisfied, then \bfitx \in \scrT 1. The proof proceeds by case
analysis, with a two-level case-analysis tree. The root considers each of \lambda > 0, \lambda < 0,
and \lambda = 0. Once the sign of \lambda is fixed, analysis for each i can proceed separately; the
KKT conditions decouple in i conditioned on \lambda . Thus, the second level of the case
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PROPERTY PRESERVATION IN TRACER TRANSPORT C189

tree concerns xi in relation to li, ui, and these in relation to 0. We use the compact
notation a: b to assign b to a.

1. Suppose \lambda > 0. Set \lambda 1 : 1. Consider index i. The following cases enumerate
relations among xi, li, ui.

Case li < xi < ui. si = 0, \lambda > 0, and \mu i, \eta i = 0 imply xi < 0. Set \phi i:  - 1, pi: 0,
\alpha i: 2, ni:  - xi, \beta i: 0, \mu 1i: 0, \eta 1i: 0.

Cases xi = li < 0; xi = ui < 0. Set the values as in the previous case.
Case xi = li > 0. Set \phi i: 1, pi: li, \alpha i: 0, ni: 0, \beta i: 2, \mu 1i: 2, \eta 1i: 0.
Case xi = ui > 0. This case cannot occur. For si = 0, \eta i \geq 0, \mu i = 0, and \lambda > 0

imply ui =  - (\eta i + \lambda )/\omega i < 0.
2. The case \lambda < 0 follows by symmetry.
3. Suppose \lambda = 0. Set \lambda 1: 0.
Case xi = 0. Set \phi i: 0, pi: 0, \alpha i: 1, ni: 0, \beta i: 1, \mu 1i: 0, \eta 1i: 0.
Case xi = li > 0. Set \phi i: 1, pi: li, \alpha i: 0, ni: 0, \beta i: 2, \mu 1i: 1, \eta 1i: 0.
Case xi = ui < 0. Set \phi i:  - 1, pi: 0, \alpha i: 2, ni:  - ui, \beta i: 0, \mu 1i: 0, \eta 1i: 1.
Case li < xi < ui with xi \not = 0. This case cannot occur, for si = \omega ixi \not = 0.
Case xi = li < 0. This case cannot occur. As xi < 0 and \mu i \geq 0, si < 0.
Case xi = ui > 0. This follows from the previous case by symmetry.
If \bfitx \in \scrT w1(\bfitomega , b, \bfitl ,\bfitu ) rather than \scrT w2(\bfitomega , b, \bfitl ,\bfitu ), the differences in the proof are in

the justifications for why cases cannot occur, since those cases that can occur concern
only the details of \scrP 1's KKT conditions. Let \scrP w1's multipliers have subscript w1
rather than just 1.

1. Case xi = ui > 0 (with \lambda w1 > 0 by assumption of the case analysis). Again,
this case cannot occur. As xi > 0, \alpha w1i = 0 and \phi w1i = \omega i. These and \eta w1i \geq 0,
\mu w1i = 0, \lambda w1 > 0 imply sw1i > 0 \not = 0.

3. Suppose \lambda w1 = 0.
Case li < xi < ui with xi \not = 0. One or the other of \alpha w1i, \beta w1i must be 0 since

xi \not = 0. Hence \phi w1i \not = 0. Hence sw1i \not = 0.
Case xi = li < 0. \beta w1i = 0. Hence \phi w1i =  - \omega i < 0. \mu w1i \geq 0. These imply

sw1i < 0.
Case xi = ui > 0. This follows from the previous case by symmetry.

We can use the same proof technique to show that the primary CDRs in section 3
return 1-norm-minimal corrections.

Proof of Proposition 3.2. Consider \bfitx returned by ClipAndGenericSum, and
assume \bfitx \in \scrT (b, \bfitl ,\bfitu ). The proof that \bfitx \in \scrT 1(b, \bfitl ,\bfitu ) is similar to that for Proposi-
tion 4.1.

Consider the case m \leq 0. Set \lambda 1: 1.
Case xi = li and li \leq 0. Set \phi i:  - 1, pi: 0, \alpha i: 2, ni:  - li, \beta i: 0, \mu 1i: 0, \eta 1i: 0.
Case xi = li and li \geq 0. Set \phi i: 1, pi: li, \alpha i: 0, ni: 0, \beta i: 2, \mu 1i: 2, \eta 1i: 0.
Case xi = ui \leq 0. Set \phi i:  - 1, pi: 0, \alpha i: 2, ni:  - ui, \beta i: 0, \mu 1i: 0, \eta 1i: 0.
Case li < xi < ui and xi \leq 0. Set \phi i:  - 1, pi: 0, \alpha i: 2, ni:  - xi, \beta i: 0, \mu 1i: 0, \eta 1i: 0.
Case li < xi \leq ui and xi > 0. This case cannot occur. li < xi and m \leq 0 imply

li < 0. xi \leq ui and xi > 0 imply ui > 0. Hence \=xi = 0. This and m \leq 0 imply xi \leq 0,
a contradiction.

2. The m > 0 case follows by symmetry.

A.3. Tree algorithms. Let r be the root. For mathematical analysis, but not
for use in Algorithm 5.1, let n have these additional fields:

\bullet L, the level of the node, the number of edges between the root and n;
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C190 BRADLEY, BOSLER, GUBA, TAYLOR, AND BARNETT

\bullet p, n's parent, None if n = r;
\bullet I, an index such that n = n.p.kids[n.I];
\bullet \=\bfitQ 

\ast 
, \=\bfitrho , b, \bfitl , \bfitu , \bfitx , \bfitw , \bfitl s, \bfitu s: n's problem data; all but \bfitl s, \bfitu s correspond to

the n-subscripted vectors in RootToLeaves.
The notation \bfity [i] is array index notation; \bfity [i] is semantically equivalent to yi,

but \bfity [i] is clearer than yi when the index i is itself notationally complicated. The n-
subscripted vectors, e.g., \bfitl n, are semantically equivalent to n.\bfitl . But in Algorithm 5.1,
we want to emphasize that they are local, temporary vectors and so write \bfitl n, while
we use n.\bfitl in our analysis. Let the height of the tree be H \equiv maxn\in \scrN n.L. Let
\scrN L \equiv \{ n : n.L = L or (n.kids = \emptyset and n.L < L)\} . \scrN L is the union of the set of nodes
in a level and leaf nodes closer to the root.

In the proofs of Propositions 5.1 and 5.3, values of all quantities are considered
after QLT completes. Some relations among quantities are required; these follow from
direct inspection of the algorithm.

Lemma A.4. QLT has the following relations among nodal quantities. Leaves-
ToRoot implies these statements:

(a) n.p.\bfitv [n.I] = \bfite \cdot n.\bfitv , for \bfitv \in \{ \=\bfitQ \ast 
, \=\bfitrho , \bfitl ,\bfitu ,\bfitw \} ;

(b) \bfite \cdot r.\bfitv = \bfite \cdot \bfitv for \bfitv \in \{ \=\bfitQ \ast 
, \=\bfitrho , \bfitl ,\bfitu ,\bfitw \} ;

(c) if n is a leaf, B(n.\bfitl , n.\bfitu ) = | d(n.\bfitl , n.\bfitu )| ;
else B(n.\bfitl , n.\bfitu ) =

\sum 
k\in n.kids | d(k.\bfitl , k.\bfitu )| .

RootToLeaves implies these statements:
(d) if n = r, then n.b = b; else n.b = n.p.\bfitx [n.I];
(e) if n is a leaf, n.b = n.\bfitx , where n.\bfitx has just one element.

Proof of Proposition 5.1. Let \scrT (n) \equiv \scrT (n.b, n.\bfitl , n.\bfitu ) and \scrT s(n) \equiv \scrT s(n. \=\bfitQ \ast 
, n.\=\bfitrho ,

n.b, n.\bfitl , n.\bfitu ).
1. In all cases, mass conservation can be deduced by induction on level L.
Base case (B.C.).

\sum 
n\in \scrN 0

n.b = r.b = b by Lemma A.4(d).
Inductive hypothesis (I.H.).

\sum 
n\in \scrN L - 1

n.b = b.

Inductive step (I.S.). As n.b = n.p.\bfitx [n.I] by Lemma A.4(d),
\sum 

n\in \scrN L
n.b =\sum 

n\in \scrN L - 1
\bfite \cdot n.\bfitx . By Proposition 3.8,

\sum 
n\in \scrN L - 1

\bfite \cdot n.\bfitx =
\sum 

n\in \scrN L - 1
n.b, which by the

I.H. is b.
For L \geq H,

\sum 
n\in \scrN L

\bfite \cdot n.b = \bfite \cdot \bfitx by Lemma A.4(d). Thus \bfite \cdot \bfitx = b.
2. Structural induction over the tree shows that if \bfitl \leq \bfitu , then n.\bfitl \leq n.\bfitu for all

n \in \scrN .
3. For (i), first we show that \scrT (b, \bfitl ,\bfitu ) \not = \emptyset implies \scrT (n) is nonempty for all n \in \scrN .

Hence ReconstructSafely returns n.\bfitx \in \scrT (n). We use structural induction over
the tree.

B.C. As \scrT \not = \emptyset only if \bfite \cdot \bfitl \leq b \leq \bfite \cdot \bfitu , by Lemma A.4(b),(d), \scrT (r) \not = \emptyset also.
I.H. \scrT (n.p) \not = \emptyset .
I.S. As \scrT (n.p) \not = \emptyset by the I.H., n.p.\bfitx \in \scrT (n.p). Hence n.p.\bfitl [n.I] \leq n.p.\bfitx [n.I] \leq 

n.p.\bfitu [n.I]; then by Lemma A.4(a),(d), \bfite \cdot n.\bfitl \leq n.b \leq \bfite \cdot n.\bfitu . This and part 2 fulfill
the conditions of Proposition 2.1; hence \scrT (n) \not = \emptyset .

If n is a leaf, then \bfitx [n.id] = n.b, \bfitl [n.id] = n.\bfitl , \bfitu [n.id] = n.\bfitu . Hence n.\bfitl = \bfitl [n.id] \leq 
\bfitx [n.id] \leq \bfitu [n.id] = n.\bfitu ; hence \bfitl \leq \bfitx \leq \bfitu .

4. For (ii), \scrT s( \=\bfitQ \ast 
, \=\bfitrho , b, \bfitl ,\bfitu ) \not = \emptyset does not imply \scrT s(n) \not = \emptyset for all n \in \scrN ; thus,

we cannot proceed as in part 3. Instead, we must consider the two classes of return
values from ReconstructSafely(n. \=\bfitQ 

\ast 
, \bfite \cdot n. \=\bfitQ \ast 

+n.b, n.\bfitl , n.\bfitu , n.\bfitw , SelectX) when
\scrT = \emptyset . We consider the \bfitu case; the \bfitl case follows by symmetry.

Let n.qmax \equiv maxi
n. \=\bfitQ \ast [i]+n.\bfitu [i]

n.\=\bfitrho [i] and n.\bfitu s \equiv n.qmaxn.\=\bfitrho  - n. \=\bfitQ 
\ast 
. First, in part
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PROPERTY PRESERVATION IN TRACER TRANSPORT C191

4(a), we prove that for every node n \in \scrN ,

(A.1) n.qmax \leq qmax(\=\bfitrho ,\bfitu ) \equiv qmax.

Second, in part 4(b), given (A.1), we prove n.\bfitx \leq qmaxn.\=\bfitrho  - n. \=\bfitQ 
\ast 
. This inequality

implies that if n is a leaf, then \bfitx [n.id] = n.\bfitx \leq qmax\=\bfitrho [n.id] - \=\bfitQ 
\ast 
[n.id] = \bfitu s[n.id], as

desired.
4(a) B.C. If n is a leaf, then (A.1) holds by the definition of qmax.
I.H. (A.1) holds for n.kids[i].
I.S. By Lemma A.4(a) and the I.H.,

n.qmax = max
i

\bfite \cdot (n.kids[i]. \=\bfitQ \ast 
+ n.kids[i].\bfitu )

\bfite \cdot n.kids[i].\=\bfitrho \leq max
i

qmax\bfite \cdot n.kids[i].\=\bfitrho 
\bfite \cdot n.kids[i].\=\bfitrho = qmax.

4(b) B.C. As \scrT s \not = \emptyset and by Lemma A.4(d) and then (b), r.b = b \leq \bfite \cdot \bfitu s =
\bfite \cdot (qmax\=\bfitrho  - \=\bfitQ 

\ast 
) = \bfite \cdot (qmaxr.\=\bfitrho  - r. \=\bfitQ 

\ast 
).

I.H. n.b \leq \bfite \cdot (qmaxn.\=\bfitrho  - n. \=\bfitQ 
\ast 
).

I.S. Suppose n.b \leq \bfite \cdot n.\bfitu s. Then ReconstructSafely and part 4(a) imply
n.\bfitx \leq n.\bfitu s = n.qmaxn.\=\bfitrho  - n. \=\bfitQ 

\ast \leq qmaxn.\=\bfitrho  - n. \=\bfitQ 
\ast 
. Suppose instead n.b > \bfite \cdot n.\bfitu s.

By the I.H. and the definition of n.\bfitu s, n.b - \bfite \cdot n.\bfitu s \leq \bfite \cdot (qmaxn.\=\bfitrho  - n. \=\bfitQ 
\ast 
) - \bfite \cdot n.\bfitu s

= (qmax  - n.qmax)\bfite \cdot n.\=\bfitrho . Hence n.qmax + n.b - \bfite \cdot n.\bfitu s

\bfite \cdot n.\=\bfitrho \leq qmax, which along with the
definition of n.\bfitu s implies that ReconstructSafely returns

n.\bfitx = n.\bfitu s +
n.b - \bfite \cdot n.\bfitu s

\bfite \cdot n.\=\bfitrho n.\=\bfitrho \leq qmaxn.\=\bfitrho  - n. \=\bfitQ 
\ast 
.

In either case, n.\bfitx \leq qmaxn.\=\bfitrho  - n. \=\bfitQ 
\ast 
.

Finally, either n is a leaf node and so n.b = n.\bfitx (Lemma A.4(e)), or n.kids[i].b =
n.\bfitx [i] \leq \bfite \cdot (qmaxn.kids[i].\=\bfitrho  - n.kids[i]. \=\bfitQ 

\ast 
).

5. In the case of (iii), the bound constraint cannot be satisfied.

Proof of Proposition 5.3. Let B(n) \equiv B(n.\bfitl , n.\bfitu ), d(n) \equiv d(n.\bfitl , n.\bfitu ).
1. Case (i). First we show that

(A.2)
\sum 

n\in \scrN L

\| n.\bfitx \| 1 \leq | b| + 2
\sum 

n\in \scrN L

B(n) - 2| d(r)| .

The proof is by induction on L.
B.C. At L = 0,

\sum 
n\in \scrN 0

\| n.\bfitx \| 1 = \| r.\bfitx \| 1 \leq | b| +2(B(r) - | d(r)| ) by Lemma A.4(d)
and Proposition 3.10.

I.H.
\sum 

n\in \scrN L - 1
\| n.\bfitx \| 1 \leq | b| + 2

\sum 
n\in \scrN L - 1

B(n) - 2| d(r)| .
I.S. Proposition 3.10 implies \| n.\bfitx \| 1 \leq | n.b| + 2(B(n)  - | d(n)| ). By this and

Lemma A.4(d), then the I.H., then Lemma A.4(c), and finally simplification,\sum 
n\in \scrN L

\| n.\bfitx \| 1 \leq 
\sum 

n\in \scrN L - 1

\| n.\bfitx \| 1 + 2
\sum 

n\in \scrN L

(B(n) - | d(n)| )

\leq | b| + 2
\sum 

n\in \scrN L - 1

B(n) - 2| d(r)| + 2
\sum 

n\in \scrN L

(B(n) - | d(n)| )

= | b| + 2
\sum 

n\in \scrN L

| d(n)|  - 2| d(r)| + 2
\sum 

n\in \scrN L

(B(n) - | d(n)| )

= | b| + 2
\sum 

n\in \scrN L

B(n) - 2| d(r)| .
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2. For L \geq H, (A.2) implies \| x\| 1 =
\sum 

n\in \scrN L
\| n.\bfitx \| 1 \leq | b| + 2

\sum 
n\in \scrN L

B(n)  - 
2| d(r)| = | b| + 2(B(\bfitl ,\bfitu )  - | d(\bfitl ,\bfitu )| ) because all n \in \scrN L are leaf nodes since L \geq H.
d(\bfitl ,\bfitu ) = d(r) because \bfite \cdot \bfitl = \bfite \cdot r.\bfitl and the same is true for \bfitu by Lemma A.4(b).

3. Case (ii). First we show by structural induction that \scrT = \emptyset implies either
n.b \geq \bfite \cdot n.\bfitu for all n \in \scrN or n.b \leq \bfite \cdot n.\bfitl for all n \in \scrN . Assume b \geq \bfite \cdot \bfitu ; the case
b \leq \bfite \cdot \bfitl follows by symmetry.

B.C. By Lemma A.4(b), b \geq \bfite \cdot \bfitu implies r.b \geq \bfite \cdot r.\bfitu .
I.H. n.p.b \geq \bfite \cdot n.p.\bfitu .
I.S. By Proposition 3.10, n.p.\bfitx [n.I] \geq n.p.\bfitu [i]. By Lemma A.4(a,d), n.b \geq \bfite \cdot n.\bfitu .
4. Consider the case b \geq \bfite \cdot \bfitu . For L \geq H,

\sum 
n\in \scrN L

\| n.\bfitx  - n.\bfitu \| 1 \leq 
\sum 

n\in \scrN L
(n.b - 

\bfite \cdot n.\bfitu ) and n.\bfitx \geq n.\bfitu by part 3 and Proposition 3.10. By part 1 of the proof
of Proposition 5.1,

\sum 
n\in \scrN L

n.b = b. Since LeavesToRoot is a reduction with the
addition operator,

\sum 
n\in \scrN L

\bfite \cdot n.\bfitu = \bfite \cdot \bfitu . Hence
\sum 

n\in \scrN L
\| n.\bfitx  - n.\bfitu \| 1 \leq b - \bfite \cdot \bfitu . As

L \geq H, every n \in \scrN L is a leaf node; hence
\sum 

n\in \scrN L
\| n.\bfitx  - n.\bfitu \| 1 = \| \bfitx  - \bfitu \| 1 \leq b - \bfite \cdot \bfitu 

and \bfitx \geq \bfitu .
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